Although used in a very large variety of applications, drilling is one of the most complex and least understood manufacturing processes. Most of the research on drilling was done in the field of metal cutting for mechanical parts since, in this case, high precision and quality are needed. The use of composite materials in engineering applications has increased in recent years, and in many of these applications drilling is one of the most critical stages in the manufacturing process. This is because it is among the last operations in the manufacturing plan of composite parts. Delamination and extensive tool wear are among the problems which drilling of composite materials are currently facing. A major difference between metallic and composite plates is their structure: isotropic for metals and anisotropic for composite materials; meaning that while for metallic materials all the structure will respond in a similar manner under the machining loads, the composite structure will have localized responses from the same loads, leading to defects in the internal structure of the remaining work-piece material (i.e. delamination). Delamination can lead to failure in use and parts with such defects are usually discarded. Delamination is not usually visually detectable and special testing is necessary, affecting the costs of the final parts. Delamination during drilling was found to occur at tool entry (peel-up) or tool exit (push-out) and depends on the loads at inter-laminar level. The work presented in the current thesis focuses in providing reliable information about the thrust and torque distribution along the drill radius (and work-piece thickness) during drilling for varying cutting parameters, drill geometry and work-piece material. Such data should assist in the development of delamination models capable of capturing the influence of the drill geometry and cutting parameters on delamination onset and propagation during both exit and entry of the drill in the work-piece. A cutting force model is proposed to obtain the elementary cutting force distribution along the drill radius which is able to account for changes in axial feed rate and drill geometry. Based on oblique cutting, forces are considered on both rake and relief faces. A generic relationship in the form of a transformation matrix is developed to relate oblique cutting to drilling, valid for any drill geometry. The mathematical description of the drill geometry in the scope of cutting force modeling has been revised. The kinematics of the drilling process is now taken into account for (i) all geometrical parameters of the drill and for (ii) the elementary cutting forces decomposition. Additionally, a new drill type and its geometric features have been described mathematically and the definition of the geometrical parameters has been generalized so that other drills types or variations could be easily implemented into the model. It proved therefore possible to adopt simpler expressions for t
Jean-François Molinari, Sacha Zenon Wattel
David Andrew Barry, Qihao Jiang
Yves Weinand, Julien Gamerro, Andrea Settimi, Hong-Bin Yang