AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
Distribution de Wigner-VilleLa distribution de Wigner-Ville, des noms de Eugene Wigner et Jean Ville. Elle a été introduite par Eugene Wigner en 1932 dans le cadre de la physique quantique pour introduire des corrections quantiques à la physique statistique. Son objectif était de remplacer dans l'équation de Schrödinger la fonction d'onde par une densité de probabilité dans l'espace des phases. Cette fonction est par construction à valeurs réelles. Mais du fait de la redondance de la base de représentation, telle qu'exprimée par les relations d'incertitude, cette fonction peut prendre des valeurs négatives.
Bilinear time–frequency distributionBilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
Harmonique (musique)vignette|Les harmoniques d'une corde vibrante En acoustique musicale, un partiel harmonique (ou, plus simplement, un harmonique) est une composante d’un son périodique, dont la fréquence est un multiple entier d'une fréquence fondamentale. Dans une conception traditionnelle du « son musical », le son musical est périodique, c'est-à-dire que ses partiels sont harmoniques ; les sons non harmoniques étaient décrits comme des « bruits ». Dans les musiques d'aujourd'hui, tout son peut être considéré comme musical dans un contexte approprié.
Harmonique sphériqueEn mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières, c'est-à-dire des fonctions dont le laplacien est nul. Les harmoniques sphériques sont particulièrement utiles pour résoudre des problèmes invariants par rotation, car elles sont les vecteurs propres de certains opérateurs liés aux rotations. Les polynômes harmoniques P(x,y,z) de degré l forment un espace vectoriel de dimension 2 l + 1, et peuvent s'exprimer en coordonnées sphériques (r, θ, φ) comme des combinaisons linéaires des (2 l + 1) fonctions : avec .
Son purdroite|vignette| La forme d'onde de pression exercée par un son pur en fonction du temps ressemble à ceci, sa fréquence détermine l'échelle de l'axe x, son amplitude détermine l'échelle de l'axe y, et sa phase détermine l'origine x. En psychoacoustique, un son pur, ou encore un ton pur, une note pure, voire une tonalité pure (en anglais : pure tone) est un son avec une forme d'onde sinusoïdale. L'audiologie utilise les tons purs l'audiogramme tonal, qui détermine les seuils d'audition à différentes fréquences.
Loi des rendements décroissantsEn économie, la loi des rendements décroissants énonce le principe selon lequel le rendement marginal (ou productivité marginale) obtenu par l'utilisation d'un facteur de production supplémentaire (le capital ou le travail) diminue, toutes choses égales par ailleurs. Le facteur de production est traditionnellement le travail ou le capital, mais le raisonnement a été étendu à d'autres champs. Elle est aussi connue sous le nom de la loi des proportions variables, loi des rendements non proportionnels ou loi des rendements marginaux décroissants.