Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Stratégie de régulationUne stratégie (ou topologie) de régulation est, pour un procédé industriel, l'organisation du système de contrôle-commande en vue de maintenir une grandeur physique dans une plage de tolérance donnée. Le choix de stratégie est très important dans les industries de transformation (par exemple les industries chimiques, papetières, agroalimentaires) en raison de la variabilité d'un nombre élevé de grandeurs physiques incidentes (dites « perturbations ») qui y sont présentes.
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Autoregressive integrated moving averageIn statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. To better comprehend the data or to forecast upcoming series points, both of these models are fitted to time series data. ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.
Transmission Control ProtocolTransmission Control Protocol (littéralement, « protocole de contrôle de transmissions »), abrégé TCP, est un protocole de transport fiable, en mode connecté, documenté dans la de l’IETF. Dans le modèle Internet, aussi appelé modèle TCP/IP, TCP est situé au-dessus de IP. Dans le modèle OSI, il correspond à la couche transport, intermédiaire de la couche réseau et de la couche session. Les applications transmettent des flux de données sur une connexion réseau.
Processus stationnairePour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Vecteur Autoregressif (VAR)Le modèle à Vecteur Autoregressif (VAR) est un modèle économique qui permet de capturer les interdépendances entre plusieurs séries temporelles. Il s'agit de la principale catégorie de modèle statistique. Dans un modèle VAR, les variables sont traitées symétriquement de manière que chacune d'entre elles soit expliquée par ses propres valeurs passées et par les valeurs passées des autres variables. De ce fait, les modèles VAR mobilisent des bases de données importantes.
Moving-average modelIn time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, which have a more complicated stochastic structure.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .