Pour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps. Lorsque cette hypothèse est vraisemblable, le processus bâti autour du signal est rendu ergodique, les moyennes temporelles étant identiques aux moyennes d'ensemble. On trouvera ci-dessous quelques éléments qui précisent un peu ces notions. L'hypothèse stationnaire est admise dans de nombreux modèles théoriques, facile à réaliser dans des simulations numériques, beaucoup plus difficile voire impossible à justifier à propos d'un signal réel, faute de pouvoir accéder à d'autres réalisations du même processus. Il faut très généralement se contenter d'une justification grossière, utilisée par exemple dans l'analyse des enregistrements de vagues, qui consiste à dire qu'un enregistrement d'une vingtaine de minutes est assez court pour assurer la stationnarité (il est peu probable que les conditions météorologiques aient été modifiées) mais assez long pour qu'il fournisse des informations statistiques pertinentes. Pour un autre point de vue voir Stationnarité d'une série temporelle. Un processus est un ensemble de fonctions ordinaires , chacune d'elles étant une réalisation du processus. On peut caractériser ce processus en lui associant à chaque instant une densité de probabilité . À une réalisation donnée on peut associer les moyennes temporelles À la densité de probabilité on peut associer les moments appelés moyennes d'ensemble Si ces moyennes d'ensemble, et par conséquent la densité de probabilité, ne dépendent pas de l'instant , on parle de processus stationnaire. Si, de plus, les moyennes temporelles leur sont égales, il s'agit d'un processus ergodique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (20)
MATH-342: Time series
A first course in statistical time series analysis and applications.
COM-516: Markov chains and algorithmic applications
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Afficher plus
Séances de cours associées (128)
Processus stochastiques: 2ème analyse de l'ordre
Explore les processus stochastiques, la stationnarité, l'ergonomie et le filtrage Wiener pour la restauration de l'image.
Modèles stochastiques pour les communications
Couvre les modèles stochastiques pour les communications, y compris la stationnarité, l'ergonomie, la densité spectrale de puissance, et le filtre Wiener.
Séries chronologiques: Fondements et modèles
Couvre les principes fondamentaux de l'analyse des séries chronologiques, y compris les modèles, la stationnarité et les aspects pratiques.
Afficher plus
Publications associées (133)

Detecting whether a stochastic process is finitely expressed in a basis

Victor Panaretos, Neda Mohammadi Jouzdani

Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023

Finding stationary points on bounded-rank matrices: a geometric hurdle and a smooth remedy

Nicolas Boumal

We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. This turns out to be unexpectedly delicate. We trace the difficulty back to a geometric obstacle: On a nonsmooth se ...
SPRINGER HEIDELBERG2022

On the rate of convergence for the autocorrelation operator in functional autoregression

Victor Panaretos, Alessia Caponera

We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a funct ...
ELSEVIER2022
Afficher plus
Concepts associés (18)
Série temporelle
thumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Densité spectrale de puissance
On définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Processus gaussien
En théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Afficher plus
MOOCs associés (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.