Grammaire formelleUne grammaire formelle est un formalisme permettant de définir une syntaxe et donc un langage formel, c'est-à-dire un ensemble de mots admissibles sur un alphabet donné. La notion de grammaire formelle est particulièrement utilisée en programmation logique, compilation (analyse syntaxique), en théorie de la calculabilité et dans le traitement des langues naturelles (tout particulièrement en ce qui concerne leur morphologie et leur syntaxe).
GrammaireLa grammaire est l'étude objective et systématique des éléments (phonème, morphème et mot) et des mécanismes et processus de formation, de construction et d'expression constitutifs d'une langue naturelle, écrite ou parlée, en particulier par l'étude de la morphologie et de la syntaxe et à l'exclusion de la phonologie, de la lexicologie, de la sémantique et de la stylistique. Par extension, on nomme aussi grammaire un manuel ou un ensemble de documents décrivant des règles grammaticales.
Grammaire générative et transformationnelleLa grammaire générative et transformationnelle est une théorie syntaxique s’inscrivant dans le courant de la linguistique générative. Majoritairement présente en Amérique du Nord, elle s’est développée depuis 1957 sous l’impulsion de Noam Chomsky. Cette théorie tente de caractériser la connaissance de la langue qui permet l'acte effectif du locuteur-auditeur. La grammaire générative est basée sur la distinction entre compétence et performance (connaissance que le locuteur-auditeur a de sa langue contre l’emploi effectif de la langue dans des situations concrètes).
Grammaire non contextuelleEn linguistique et en informatique théorique, une grammaire algébrique, ou grammaire non contextuelle, aussi appelée grammaire hors-contexte ou grammaire « context-free » est une grammaire formelle dans laquelle chaque règle de production est de la forme où est un symbole non terminal et est une chaîne composée de terminaux et/ou de non-terminaux. Le terme « non contextuel » provient du fait qu'un non terminal peut être remplacé par , sans tenir compte du contexte où il apparaît.
Grammaire ambigüeEn informatique théorique et en théorie des langages, une grammaire ambiguë ou ambigüe est une grammaire algébrique qui admet un mot avec deux dérivations gauches distinctes ou — de manière équivalente — deux arbres de dérivation distincts. L'ambiguïté ou l'inambiguïté est une propriété des grammaires, et non des langages. De nombreux langages admettent à la fois des grammaires ambiguës et inambigües, alors que d'autres ne possèdent que des grammaires ambiguës.
Tables de décompressionLes tables de décompression ou tables de plongée sont utilisées par les plongeurs afin de gérer leur remontée en surface tout en permettant à leur organisme d'éliminer l'azote emmagasiné au long de la plongée. Elles permettent à un plongeur équipé d'un scaphandre autonome de se soustraire d'une profondeur déterminée avec temps défini en limitant les risques liés à la décompression des gaz en respectant une vitesse de remontée constante et d'éventuels paliers de décompression.
Grammaire contextuelleUne grammaire contextuelle est une grammaire formelle dans laquelle les substitutions d'un symbole non terminal sont soumises à la présence d'un contexte gauche et d'un contexte droit. Elles sont plus générales que les grammaires algébriques. Les langages formels engendrés par les grammaires contextuelles sont les langages contextuels. Ils sont reconnus par les automates linéairement bornés. Les grammaires contextuelles ont été décrites par Noam Chomsky. Ce sont les grammaires de type 1 dans la hiérarchie de Chomsky.
Arborescencethumb|Exemple de représentation arborescente En mathématiques, plus précisément dans la théorie des graphes : une arborescence est un arbre comportant un sommet particulier , nommé racine de l'arborescence, à partir duquel il existe un chemin unique vers tous les autres sommets. En informatique, cette notion désigne souvent celle d'arbre de la théorie des graphes. Une arborescence désigne alors généralement une organisation des données en mémoire, de manière logique et hiérarchisée, utilisant une structure algorithmique d'arbre.
Grammaire d'arbres adjointsLa grammaire d'arbres adjoints, grammaire TAG, ou légèrement sensible au contexte, est un formalisme d'analyse grammaticale introduit par Aravind K. Joshi et ses collègues en 1975. Ce formalisme a été utilisé à différentes fins, et particulièrement en linguistique formelle et informatique pour le traitement de la syntaxe des langues naturelles. Historiquement, il a d'abord permis de représenter de manière directe des dépendances à longue distance et il permet également de représenter les dépendances croisées du suisse allemand et du flamand occidental, phénomène qui ne peut se traiter avec une grammaire de réécriture hors contexte, comme l'a montré S.
Arbre binaireEn informatique, un arbre binaire est une structure de données qui peut se représenter sous la forme d'une hiérarchie dont chaque élément est appelé nœud, le nœud initial étant appelé racine. Dans un arbre binaire, chaque élément possède au plus deux éléments fils au niveau inférieur, habituellement appelés gauche et droit. Du point de vue de ces éléments fils, l'élément dont ils sont issus au niveau supérieur est appelé père. Au niveau le plus élevé, niveau 0, il y a un nœud racine.