Primitive cryptographiqueUne primitive cryptographique est un algorithme cryptographique de bas niveau, bien documenté, et sur la base duquel est bâti tout système de sécurité informatique. Ces algorithmes fournissent notamment des fonctions de hachage cryptographique et de chiffrement. À la création d’un système cryptographique (ou cryptosystème), le concepteur se fonde sur des briques appelées « primitives cryptographiques ». Pour cette raison les primitives cryptographiques sont conçues pour effectuer une tâche précise et ce de la façon la plus fiable possible.
Protocole cryptographiqueUn protocole de sécurité (protocole cryptographique ou protocole de chiffrement) est un protocole abstrait ou concret qui remplit une fonction liée à la sécurité et applique des méthodes cryptographiques, souvent sous forme de séquences de primitives cryptographiques. Un protocole décrit comment les algorithmes doivent être utilisés et inclut des détails sur les structures de données et les représentations, à quel point il peut être utilisé pour implémenter plusieurs versions interopérables d'un programme.
Cryptographiethumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Fonction de hachage cryptographiqueUne fonction de hachage cryptographique est une fonction de hachage qui, à une donnée de taille arbitraire, associe une image de taille fixe, et dont une propriété essentielle est qu'elle est pratiquement impossible à inverser, c'est-à-dire que si l'image d'une donnée par la fonction se calcule très efficacement, le calcul inverse d'une donnée d'entrée ayant pour image une certaine valeur se révèle impossible sur le plan pratique. Pour cette raison, on dit d'une telle fonction qu'elle est à sens unique.
Clé de chiffrementUne clé est un paramètre utilisé en entrée d'une opération cryptographique (chiffrement, déchiffrement, scellement, signature numérique, vérification de signature). Une clé de chiffrement peut être symétrique (cryptographie symétrique) ou asymétrique (cryptographie asymétrique). Dans le premier cas, la même clé sert à chiffrer et à déchiffrer. Dans le second cas on utilise deux clés différentes, la clé publique est utilisée au chiffrement alors que celle servant au déchiffrement est gardée secrète : la clé secrète, ou clé privée, et ne peut pas se déduire de la clé publique.
Key-agreement protocolIn cryptography, a key-agreement protocol is a protocol whereby two or more parties can agree on a cryptographic key in such a way that both influence the outcome. If properly done, this precludes undesired third parties from forcing a key choice on the agreeing parties. Protocols that are useful in practice also do not reveal to any eavesdropping party what key has been agreed upon. Many key exchange systems have one party generate the key, and simply send that key to the other party—the other party has no influence on the key.
Cryptographically secure pseudorandom number generatorA cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG). Most cryptographic applications require random numbers, for example: key generation nonces salts in certain signature schemes, including ECDSA, RSASSA-PSS The "quality" of the randomness required for these applications varies.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.