Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux. On y trouve par exemple les corps finis ainsi que les corps de caractéristique nulle, parmi lesquels les corps des rationnels, des réels et des complexes. Le groupe des automorphismes d'une extension est un puissant outil d'analyse d'une extension algébrique. Il est particulièrement efficace si le nombre de racines du polynôme minimal est toujours égal à son degré. Cette propriété est toujours vérifiée si le corps initial est de caractéristique nulle ou si le corps est fini. On parle alors du groupe de Galois. En revanche, cette propriété n'est pas vraie sur tous les corps, la théorie de Galois qui est l'étude des extensions algébriques demande pour la démonstration de l'essentiel des théorèmes la séparabilité. La première conséquence de la séparabilité est le théorème de l'élément primitif. Si une extension finie L sur un corps K est séparable alors il existe un élément a de L de polynôme minimal P(X) sur K tel que L soit le corps de rupture de P(X). Cela signifie que L est égal à K[a] ou encore que L est une extension simple. Dans le cas où l'extension est finie et séparable, il existe autant de K-homomorphismes de L dans une clôture algébrique que le degré de l'extension. Si de plus ces homomorphismes laissent stable l'extension, on dit que c'est une extension de Galois. C'est le contexte initial de la théorie de Galois. Dans la suite de l'article, K désigne un corps, L une extension algébrique, P(X) un polynôme formel à coefficients dans K et a un élément de L. Ω désigne la clôture algébrique de K.
Romain Christophe Rémy Fleury, Matthieu Francis Malléjac