CorrosionLa corrosion désigne l'altération d'un matériau par réaction chimique avec un oxydant (le dioxygène et le cation H+ en majorité). Il faut en exclure les effets purement mécaniques (cela ne concerne pas, par exemple, la rupture sous l'effet de chocs), mais la corrosion peut se combiner avec les effets mécaniques et donner de la corrosion sous contrainte et de la fatigue-corrosion ; de même, elle intervient dans certaines formes d'usure des surfaces dont les causes sont à la fois physicochimiques et mécaniques.
Laboratoire sur puceUn laboratoire sur puce est un dispositif intégré rassemblant, sur un substrat miniaturisé, une ou plusieurs fonctions de laboratoire. L'analyse du vivant regroupe trois des quatre raisons majeures ayant entraîné le développement de la microfluidique ; elle représente par conséquent une large part des applications. On considère généralement que le premier dispositif microfluidique d'analyse est celui développé par Terry et al. ; ceux-ci réalisent en 1979 un système miniaturisé d'analyse de gaz par chromatographie sur un substrat de silicium.
Protection cathodiqueLa protection cathodique permet de protéger un métal contre la corrosion. Pour modifier le potentiel du métal à protéger cathodiquement, une anode installée dans le même électrolyte est utilisée. Les anodes peuvent être de deux types : soit des anodes ayant un potentiel standard plus bas que le métal à protéger (anode sacrificielle), soit des anodes couplées à un générateur de tension continue imposant une différence de potentiel entre les deux métaux (méthode à courant imposé).
MicrofluidiqueLa microfluidique est la science et la technique des systèmes manipulant des fluides et dont au moins l'une des dimensions caractéristiques est de l'ordre du micromètre. George Whitesides définit la microfluidique comme « la science et la technologie des systèmes qui manipulent de petits volumes de fluides ( à ), en utilisant des canaux de la dimension de quelques dizaines de micromètres ». Selon Patrick Tabeling, Tabeling précise qu'il entend essentiellement par « nouvelles techniques » la microfabrication héritée de la micro-électronique.
Fabrication des dispositifs à semi-conducteursthumb|upright=1.5|Évolution de la finesse de gravure des processeurs entre 1970 et 2017 La fabrication des dispositifs à semi-conducteur englobe les différentes opérations permettant l'élaboration de composants électroniques basés sur des matériaux semi-conducteurs. Entrent dans cette catégorie de composants à semi-conducteur, les composants discrets qui n'ont qu'une seule fonction comme les diodes et les transistors, et les circuits intégrés plus complexes, intégrant plusieurs composants, jusqu'à des milliards, dans le même boîtier.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Droplet-based microfluidicsDroplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments.
Décomposition polaireLa décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).