Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Sémantique opérationnelleEn informatique, la sémantique opérationnelle est l'une des approches qui servent à donner une signification aux programmes informatiques d'une manière rigoureuse, mathématiquement parlant (voir Sémantique des langages de programmation). Une sémantique opérationnelle d'un langage de programmation particulier décrit comment chaque programme valide du langage doit être interprété en termes de suite d'états successifs dans la machine. Cette suite d'états est la signification du programme.
Type abstraitEn informatique, un type de donnée abstrait (en anglais, abstract data type ou ADT) est une spécification mathématique d'un ensemble de données et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'abstrait ce type de donnée car il ne spécifie pas comment les données sont représentées ni comment les opérations sont implémentées. Les types abstraits les plus utilisés sont : arbre binaire conteneur dictionnaire ou tableau associatif ensemble Graphe liste multiensemble pile Union-find Un type abstrait est composé de cinq champs : Type abstrait ; Utilise ; Opérations ; Pré-conditions ; Axiomes.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
Programmation concurrenteLa programmation concurrente est un paradigme de programmation tenant compte, dans un programme, de l'existence de plusieurs piles sémantiques qui peuvent être appelées threads, processus ou tâches. Elles sont matérialisées en machine par une pile d'exécution et un ensemble de données privées. La concurrence est indispensable lorsque l'on souhaite écrire des programmes interagissant avec le monde réel (qui est concurrent) ou tirant parti de multiples unités centrales (couplées, comme dans un système multiprocesseurs, ou distribuées, éventuellement en grille ou en grappe).
Sémantique des langages de programmationEn informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.
Type algébrique de donnéesUn type algébrique est une forme de type de données composite, qui combine les fonctionnalités des types produits (n‐uplets ou enregistrements) et des types sommes (union disjointe). Combinée à la récursivité, elle permet d’exprimer les données structurées telles que les listes et les arbres. Le type produit de deux types A et B est l’analogue en théorie des types du produit cartésien ensembliste et est noté A × B. C’est le type des couples dont la première composante est de type A et la seconde de type B.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.
Liste (informatique)En informatique, une liste est une structure de données permettant de regrouper des données de manière à pouvoir y accéder librement (contrairement aux et aux piles, dont l'accès se fait respectivement en mode FIFO et LIFO). La liste est à la base de structures de données plus complexes comme la pile, la , les arbres, etc. L'importance de la liste comme structure de données est telle qu'elle est à la base du langage de programmation Lisp (de l'anglais list processing).