Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Fonction quantileEn probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
L-momentIn statistics, L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of order statistics (L-statistics) analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-mean is identical to the conventional mean). Standardised L-moments are called L-moment ratios and are analogous to standardized moments.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Statistique (indicateur)Une statistique est, au premier abord, le résultat d'une suite d'opérations appliquées à un ensemble de nombres appelé échantillon. D'une façon générale, c'est le résultat de l'application d'une méthode statistique à un ensemble de données. Dans le calcul de la moyenne arithmétique, par exemple, l'algorithme consiste à calculer la somme de toutes les valeurs des données et à diviser par le nombre de données. La moyenne est ainsi une statistique.
Summary statisticsIn descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.