Segment sphériqueEn géométrie, un segment sphérique est le solide défini en coupant une boule avec une paire de plans parallèles. La surface du segment sphérique à l'exclusion des bases est appelée zone sphérique. Le segment sphérique est donc la partie de l’espace limitée par une zone sphérique et deux disques. Si le rayon de la sphère est appelé R, les rayons des bases des segments sphériques sont r1 et r2 et la hauteur du segment sphérique (la distance d'un plan parallèle à l'autre) appelée h, alors le volume du segment sphérique est : Lorsqu'un des plans est tangent à la sphère, on parle de segment sphérique à une base.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Simulation d'un système à N corpsvignette| Une simulation à N corps de la formation cosmologique d'un amas de galaxies dans un univers en expansion. En physique et en astronomie, une simulation à N corps est une simulation d'un système dynamique de particules, généralement sous l'influence de forces physiques, telles que la gravité (voir problème à N corps pour d'autres applications). Les simulations à N corps sont des outils largement utilisés en astrophysique, depuis l'étude de la dynamique de systèmes à quelques corps comme le système Terre - Lune - Soleil, jusqu'à la compréhension de l'évolution de la structure à grande échelle de l'univers observable.
Sphère médianevignette| Un polyèdre et sa sphère médiane en bleu. Les cercles rouges sont les limites des calottes sphériques dans lesquelles la surface de la sphère est visible depuis chaque sommet. vignette|Cube et son octaèdre dual avec sphère médiane commune. En géométrie, la sphère médiane ou intersphère d'un polyèdre est une sphère qui est tangente à chaque arête du polyèdre, c'est-à-dire qu'elle touche chacune des arêtes en exactement un point.
Alexandrov's uniqueness theoremThe Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.
Jeu de simulationvignette|FlightGear 3.0 Boeing 777-200 cockpit.png FlightGear 3.0, screenshot from cockpit view using low specs. Un jeu de simulation est un jeu (de société ou vidéo) qui reproduit une activité ou une action dans divers environnements. Les plus populaires sont les jeux économiques ou de gestion et les jeux de rôle. Lorsque la simulation porte sur une guerre ou une bataille réelle ou fictive, on parle plutôt de jeu de stratégie ou jeu de guerre dont le jeu de figurines est une forme de représentation.
MatièreEn physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'espace. Les quatre états les plus communs sont l'état solide, l'état liquide, l'état gazeux et l'état plasma. Réciproquement, en physique, tout ce qui a une masse est de la matière. La matière ordinaire qui nous entoure est formée principalement de baryons et constitue la matière baryonique.
Dehn invariantIn geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
Polyèdre uniforme étoiléEn géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres