TransforméeEn mathématiques, une transformée consiste à associer une fonction définie sur un domaine à une autre fonction, définie sur un domaine éventuellement différent. Un exemple d'application en physique consiste à étudier un signal défini sur le domaine temporel par sa transformation sur le domaine fréquentiel. Transformée d'Abel Transformée de Fourier Transformée de Fourier locale Transformée de Fourier-Mukai Transformée de Laplace Transformée bidirectionnelle de Laplace Transformée bilatérale de Laplace Trans
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Rotateur rigideLe rotateur rigide est un modèle mécanique utilisé pour expliquer les systèmes en rotation (et particulièrement en mécanique quantique). Un rotateur rigide quelconque est un objet tridimensionnel rigide, comme une toupie. Afin d'orienter un tel objet dans l'espace, trois angles sont nécessaires. Le rotateur linéaire, objet bidimensionnel, est un cas particulier de rotateur rigide en trois dimensions ne nécessitant que deux angles pour décrire son orientation. On peut citer comme exemple de rotateur linéaire une molécule diatomique.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Rigid transformationIn mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Euler's equations (rigid body dynamics)In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.
Mouvement à la PoinsotEn mécanique du solide, on appelle mouvement à la Poinsot, le mouvement d'un solide autour de son centre de gravité G, le moment des forces extérieures par rapport à G étant nul. Ce mouvement est caractérisé par la conservation du moment cinétique et de l'énergie cinétique de rotation , demi-produit scalaire du moment cinétique et du vecteur de rotation instantanée. Il existe 3 cas : le solide est à symétrie sphérique. Ses moments principaux d'inertie sont égaux : A = B = C.
Carré parfaitEn mathématiques, un carré parfait (ou nombre carré s'il est non nul, voire simplement carré s'il n'y a pas ambiguïté) est le carré d'un entier. Dans le système de numération décimal, le chiffre des unités d'un carré parfait ne peut être que 0, 1, 4, 5, 6 ou 9. En base douze, ces chiffres sont nécessairement 0, 1, 4 ou 9. Un carré parfait est le carré d'un entier naturel. Un nombre carré est un nombre polygonal (donc entier strictement positif) qui peut être représenté géométriquement par un carré de n × n points.
Différence de deux carrésEn mathématiques, la différence de deux carrés est un nombre au carré (multiplié par lui-même) soustrait d'un autre nombre au carré. Toute différence de carrés peut être factorisée selon l'identité: en algèbre élémentaire. La preuve de l'identité de factorisation est simple. En partant du membre de gauche, on applique la loi distributive pour obtenir Par la loi commutative, les deux termes du milieu s'annulent : il reste donc L'identité qui en résulte est l'une des plus utilisées en mathématiques.