En mathématiques, la différence de deux carrés est un nombre au carré (multiplié par lui-même) soustrait d'un autre nombre au carré. Toute différence de carrés peut être factorisée selon l'identité:
en algèbre élémentaire.
La preuve de l'identité de factorisation est simple. En partant du membre de gauche, on applique la loi distributive pour obtenir
Par la loi commutative, les deux termes du milieu s'annulent :
il reste donc
L'identité qui en résulte est l'une des plus utilisées en mathématiques. Parmi de nombreuses utilisations, il donne une preuve simple de l'inégalité arithmético-géométrique à deux variables.
La preuve est valable dans tout anneau commutatif.
Inversement, si cette identité est vérifiée dans un anneau R pour toutes les paires d'éléments a et b, alors R est commutatif. Pour voir cela, on applique la loi de distribution au côté droit de l'équation et obtient:
Pour que celui-ci soit égal à , nous devons avoir
donc pour tous les couples a, b, donc R est commutatif.
droite|170x170px
La différence de deux carrés peut également être illustrée géométriquement comme la différence de deux aires carrées dans un plan. Sur le diagramme, la partie grisée représente la différence entre les aires des deux carrés, c'est-à-dire . L'aire de la partie ombrée peut être trouvée en additionnant les aires des deux rectangles ; , qui peut être factorisé en . Donc, .
Une autre preuve géométrique procède comme suit : on commence avec la figure montrée dans le premier schéma ci-dessous, un grand carré dont un plus petit carré a été retiré. Le côté du carré entier est a, et le côté du petit carré retiré est b. L'aire de la région ombrée est . Une coupe est effectuée, divisant la région en deux morceaux rectangulaires, comme présenté sur le deuxième schéma. La plus grande pièce, en haut, a une largeur a et une hauteur a-b. La plus petite pièce, en bas, a une largeur a-b et une hauteur b. Maintenant, la plus petite pièce peut être détachée, tournée et placée à droite de la plus grande pièce.