Tube de flux magnétiqueUn tube de flux magnétique caractérise une région de l'espace où règne un fort champ magnétique occupant un territoire approximativement tubulaire. Ce champ, à la surface de sa zone de répartition, est parallèle à cette surface. On en trouve généralement autour des grands corps célestes tels que les étoiles. Le Soleil possède de nombreux tubes de flux, avec des diamètres de l'ordre de 300 kilomètres pour la plupart. Un certain nombre de tubes de flux plus importants comportant des diamètres de l'ordre de kilomètres sont connus comme étant directement en rapport avec les taches solaires.
Boundary layer thicknessThis page describes some of the parameters used to characterize the thickness and shape of boundary layers formed by fluid flowing along a solid surface. The defining characteristic of boundary layer flow is that at the solid walls, the fluid's velocity is reduced to zero. The boundary layer refers to the thin transition layer between the wall and the bulk fluid flow. The boundary layer concept was originally developed by Ludwig Prandtl and is broadly classified into two types, bounded and unbounded.
Reconnexion magnétiquedroite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
Extracellular fluidIn cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 60% (range 45 to 75%) of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.
Plasma parametersPlasma parameters define various characteristics of a plasma, an electrically conductive collection of charged particles that responds collectively to electromagnetic forces. Plasma typically takes the form of neutral gas-like clouds or charged ion beams, but may also include dust and grains. The behaviour of such particle systems can be studied statistically. All quantities are in Gaussian (cgs) units except energy and temperature which are in electronvolts.
Protéine plasmatiqueLes protéines plasmatiques sont les protéines contenues dans le plasma sanguin. Le plasma contiendrait près de trois mille protéines différentes. Les protéines les plus représentées en proportion sont les suivantes : Albumine : + de 50 % Anticorps (= Immunoglobulines): 20 % (essentiellement des IgG) Fibrinogène : 5 % Alpha 1 antitrypsine : 4 % Alpha 2 macroglobuline : 4 % Transferrine : 3 % Lipoprotéines (HDL et LDL) : 8 % Cependant même des protéines faiblement représentées en quantité peuvent avoir des fonctions essentielles pour l’organisme.
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Diffusion magnétiqueEn physique, la diffusion magnétique est un phénomène qui concerne la déformation d'un champ magnétique dans un milieu conducteur en mouvement. Ce milieu peut être un solide (par exemple une pièce métallique en rotation dans l'entrefer d'un aimant), un liquide ou un plasma. L'équation qui régit le phénomène est : où : est le champ magnétique. dénote le rotationnel. est la perméabilité du vide. est la conductivité électrique du matériau. est la vitesse de son déplacement.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Théorème d'AlfvénEn magnétohydrodynamique, le théorème d'Alfvén établit que dans un fluide dont la conductivité électrique est infinie, les lignes de champ magnétique sont "gelées" à l'intérieur de ce fluide et qu'elles sont donc contraintes de se déplacer avec celui-ci. Le physicien Hannes Alfvén fit pour la première fois part de cette idée en 1942. Il est à noter que dans la plupart des milieux étudiés en astrophysique, aussi bien que dans les conditions d'étude des plasmas en laboratoire, du fait que la conductivité électrique n'est pas infinie, les lignes de champ magnétique ne sont pas idéalement piégées à l'intérieur des fluides.