Protéines intrinsèquement désordonnéesLes protéines intrinsèquement désordonnées ou intrinsèquement non structurées sont des protéines qui manquent de structure tridimensionnelle stable, ce qui leur confère une forte plasticité qui est à l'origine de leur importance dans les phénomènes biologiques. Une protéine peut être totalement désordonnée, mais le cas le plus courant est celui où seulement une partie de la molécule, plus ou moins longue, est désordonnée (exemple : ).
Protein engineeringProtein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.
Protein designProtein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures.
Feuillet bêtaLes feuillets β ou feuillets β plissés est la deuxième forme de structure secondaire régulière observée dans les protéines, avec une fréquence de présence plus faible que les hélices α. Les feuillets β sont constitués de brins bêta (brins β) reliés latéralement par au moins deux ou trois liaisons hydrogène entre des atomes du squelette carboné de la chaine polypeptidique pour former un plan plissé (comme un accordéon), généralement tordu.
Protéineredresse=1.36|vignette|Représentation d'une protéine, ici deux sous-unités d'une molécule d'hémoglobine. On observe les représentées en couleur, ainsi que deux des quatre molécules d'hème, qui sont les groupes prosthétiques caractéristiques de cette protéine. redresse=1.36|vignette|Liaison peptidique –CO–NH– au sein d'un polypeptide. Le motif constitue le squelette de la protéine, tandis que les groupes liés aux sont les chaînes latérales des résidus d'acides aminés.
Peptidevignette|Exemple de peptide. vignette|Exemple de peptide. vignette|Exemple de peptide. Un peptide est un polymère d’acides aminés reliés entre eux par des liaisons peptidiques. Il existe une énorme variété de peptides différents. Par exemple, sachant qu'il existe distincts chez les mammifères, le nombre de peptides différents formés de seulement dix d'acides aminés vaut un peu moins de , soit près de . Les peptides constitués d’un faible nombre d’acides aminés (de deux à quelques dizaines) sont nommés oligopeptides.
Feuillet alpharedresse=1.33|vignette|Distribution des liaisons hydrogène dans un feuillet α. Les atomes d'oxygène sont représentés en rouge et ceux d'azote en bleu, tandis que les liaisons hydrogène sont en pointillés. Les chaînes latérales des résidus d'acides aminés sont symbolisés par R. Un feuillet α est une structure secondaire atypique des protéines proposée pour la première fois par Linus Pauling et Robert Corey en 1951.
Amarrage (moléculaire)vignette|Petite molécule amarrée à une protéine. Dans le domaine de la modélisation moléculaire, l’amarrage (en anglais docking) est une méthode qui calcule l'orientation préférée d'une molécule vers une seconde lorsqu'elles sont liées pour former un complexe stable. Connaître l'orientation préférée sert à prévoir la solidité de l'union entre deux molécules. Les associations entre des molécules d'importance biologique, telles que les protéines, les acides nucléiques, les glucides et les matières grasses jouent un rôle essentiel dans la transduction de signal.
Biologie de synthèseLa biologie de synthèse, ou biologie synthétique, est un domaine scientifique et biotechnologique émergeant qui combine biologie et principes d'ingénierie, dans le but de concevoir et construire (« synthétiser ») de nouveaux systèmes et fonctions biologiques, avec des applications notamment développées par les secteurs agropharmaceutique, chimique, agricole et énergétique. Les objectifs de la biologie de synthèse sont de deux types : Tester et améliorer notre compréhension des principes gouvernant la biologie (apprendre en construisant).
Extrémité N-terminaleL'extrémité N-terminale (ou terminaison amine, terminaison aminée, terminaison N ou terminaison NH2) réfère à l’extrémité d'une protéine ou d'un polypeptide se terminant par un acide aminé avec une fonction amine libre (-NH2). La convention d'écriture pour des séquences peptidiques place la terminaison amine à gauche, la séquence étant alors écrite de la terminaison N à la terminaison carboxyle. La traduction de l'ARN messager en protéine s'effectue de la terminaison N à la terminaison C.