Problème de la galerie d'artvignette|Un polygone simple à 43 côtés représentant une galerie d'art, et quatre caméras couvrent cette galerie. En informatique, plus précisément en géométrie algorithmique, le problème de la galerie d'art est un problème de visibilité bien étudié inspiré d'un problème réel. Il se formule comme suit : « Quel est le nombre de gardiens (ou caméras) nécessaires pour surveiller une galerie d'art, et où faut-il les placer ? » Formellement, la galerie d'art est représenté par un polygone simple et chaque gardien par un point du polygone.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Retour sur traceEn informatique, plus précisément en algorithmique, le retour sur trace ou retour arrière (appelé aussi backtracking en anglais) est une famille d'algorithmes pour trouver des solutions à des problèmes algorithmiques, notamment de satisfaction de contraintes. Contrairement à une recherche exhaustive, un algorithme de retour sur trace construit incrémentalement des solutions candidates. Il abandonne la construction lorsqu'il ne peut compléter le candidat courant en solution valide.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Théorème des quatre couleursLe théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Polyèdre flexibleEn géométrie, un polyèdre flexible, ou flexaèdre, est un polyèdre que l'on peut déformer continûment sans changer la forme de ses faces. Le théorème de rigidité de Cauchy montre qu'un tel polyèdre ne peut être convexe. Les premiers exemples de polyèdres flexibles, les , furent découverts par Raoul Bricard en 1897. Ce sont des surfaces auto-intersectantes (on parle parfois de polyèdres croisés, ou étoilés).
Polyèdre uniforme étoiléEn géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.