Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
TesseractEn géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques.
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Duplication du cubevignette|upright=1.2|Un cube de volume unitaire (gauche) et un cube de volume 2 (droite).À partir de la figure de gauche, il est impossible de construire par les moyens géométriques traditionnels le cube de droite.|alt=croquis de 2 cubes En mathématiques, la duplication du cube, ou problème de Délos, est un problème géométrique classique faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la trisection de l'angle. Il consiste à construire à la règle et au compas un cube de volume double de celui d'un cube donné.
Covering problemsIn combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.
HypercalculLe terme hypercalcul désigne les différentes méthodes proposées pour le calcul de fonctions non-Turing-calculables. Il a été initialement introduit par Jack Copeland. On emploie également le terme de calcul super-Turing, bien que celui d'hypercalcul puisse être connoté de la séduisante possibilité qu'une telle machine soit physiquement réalisable. Certains modèles ont été proposés, comme des réseaux de neurones avec des nombres réels en guise de poids, la capacité de conduire une infinité de calculs simultanément ou encore l'aptitude à effectuer des opérations non Turing-calculables, telles que des limites ou des intégrations.
Problèmes de HilbertLors du deuxième congrès international des mathématiciens, tenu à Paris en août 1900, David Hilbert entendait rivaliser avec le maître des mathématiques françaises, Henri Poincaré, et prouver qu'il était de la même étoffe. Il présenta une liste de problèmes qui tenaient jusqu'alors les mathématiciens en échec. Ces problèmes devaient, selon Hilbert, marquer le cours des mathématiques du , et l'on peut dire aujourd'hui que cela a été grandement le cas.
Problèmes du prix du millénaireLes problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en . La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En , six des sept problèmes demeurent non résolus. Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirmée ni rejetée faute d'une démonstration mathématique suffisamment rigoureuse ; soit définir et expliciter l'ensemble des solutions de certaines équations.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Dépassement d'entiervignette|Le vol 501 d'Ariane 5 en 1996 s'est soldé par sa destruction en raison d'un dépassement d'entier. Un dépassement d'entier (integer overflow) est, en informatique, une condition qui se produit lorsqu'une opération mathématique produit une valeur numérique supérieure à celle représentable dans l'espace de stockage disponible. Par exemple, l'ajout d'une unité au plus grand nombre pouvant être représenté entraîne un dépassement d'entier. Le dépassement d'entier porte le numéro CWE-190 dans la nomenclature Common Weakness Enumeration.