Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques. Une généralisation du cube aux dimensions plus grandes que trois est appelée un « hypercube », « n-cube » ou « polytope de mesure ». Le tesseract est l'hypercube quadridimensionnel ou 4-cube. C'est un polytope régulier. C'est aussi un cas particulier de parallélotope : un hypercube est un parallélotope droit dont les arêtes sont de même longueur. Selon lOxford English Dictionary, le mot « tesseract » a été conçu et utilisé pour la première fois en anglais en 1888 par Charles Howard Hinton dans son livre A New Era of Thought, à partir du grec ancien (« quatre rayons ») ionique, faisant référence aux quatre segments de droites à partir de chaque sommet vers les autres sommets. De manière alternative, d'autres personnes ont appelé la même figure un « tétracube ». Le tesseract standard en 4-espace euclidien est donné par l'enveloppe convexe des points (±1, ±1, ±1, ±1). C’est-à-dire qu'il est constitué des points : Un tesseract est limité par huit hyperplans (xi = ±1). Chaque paire d'hyperplans non-parallèles se coupent pour former 24 faces carrées dans un tesseract. Trois cubes et trois carrés se coupent à chaque arête. Il existe quatre cubes et six arêtes qui se rencontrent à chaque sommet. Au total, il est constitué de 8 cubes, 24 carrés, 32 arêtes et 16 sommets. Puisque chaque sommet d'un tesseract est adjacent à quatre arêtes, la figure de sommet d'un tesseract est un tétraèdre régulier. Ainsi, le tesseract est donné par le symbole de Schläfli {4,3,3}. Le polytope dual du tesseract est appelé l'hexadécachore ou 16-cellules, avec le symbole de Schläfli {3,3,4}.