Forme binaireEn musique classique, la forme binaire est une structure musicale particulière de l'œuvre musicale composée de deux sections — A et B — exécutées deux fois chacune, soit : AABB. Sur une partition, la forme binaire est le plus souvent notée au moyen de barres de reprise. La section A s'achève habituellement dans une tonalité voisine — très souvent, la tonalité de la dominante. La section B au contraire, commence par cette tonalité voisine, et, après un nombre variable de modulations, s'achève sur la tonalité de départ.
Fonction génératrice des probabilitésEn mathématiques, et plus particulièrement en théorie des probabilités, la fonction génératrice des probabilités (ou fonction génératrice des moments factoriels) d'une variable aléatoire (à valeurs dans les entiers naturels) est la série entière associée à la fonction de masse de cette variable aléatoire. La fonction génératrice des probabilités est utile car elle permet de caractériser entièrement la fonction de masse. La fonction génératrice des probabilités est usuellement identifiée à sa somme.
AnticommutativitéEn mathématiques, l'anticommutativité est la propriété caractérisant les opérations pour lesquelles intervertir deux arguments transforme le résultat en son opposé. Par exemple, une opération binaire ✻ est anticommutative si Cette propriété intervient en algèbre, en géométrie, en analyse et, par conséquent, en physique. Étant donné un entier naturel n, une opération n-aire est dite anticommutative si intervertir deux arguments transforme le résultat en son opposé.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.