Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Rate equationIn chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Eau lourdeL'eau lourde ou oxyde de deutérium DO (ou HO) est constituée des mêmes éléments chimiques que l'eau ordinaire (ou HO), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans tout atome d’hydrogène). C'est Gilbert Lewis qui isola le premier échantillon d'eau lourde pure, en 1933. L'eau semi-lourde, ou eau deutérée, est l'oxyde mixte HDO (ou HHO). Dans les océans, les mers et les eaux de surface, elle est bien plus abondante que l'eau lourde.
Force nucléaireLa force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.
Self-ionization of waterThe self-ionization of water (also autoionization of water, and autodissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH−. The hydrogen nucleus, H+, immediately protonates another water molecule to form a hydronium cation, H3O+. It is an example of autoprotolysis, and exemplifies the amphoteric nature of water.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Rendement quantiqueLe rendement quantique (Φ) d'un processus induit par le rayonnement est égal au nombre de fois qu'un évènement donné arrive divisé par le nombre de photons absorbé par le système. L'évènement en question est souvent une réaction chimique. Dans une réaction de photolyse ou photodécomposition après l'absorption d'un photon, le rendement quantique est défini par : Le rendement quantique est aussi employé dans la modélisation de la photosynthèse : Aux réactions où chaque photon effectue la photolyse d'une seule molécule du réactif, le rendement quantique sera au maximum 1 et normalement inférieur à 1 à cause de pertes, tout comme le rendement chimique d'une réaction non photochimique.
Potentiel de YukawaUn potentiel de Yukawa (appelé également 'potentiel de Coulomb écranté') est un potentiel de la forme Hideki Yukawa montra dans les années 1930 qu'un tel potentiel provient de l'échange d'un champ scalaire massif tel que celui d'un pion de masse . La particule médiatrice du champ possédant une masse, la force correspondante a une portée inversement proportionnelle à sa masse. Pour une masse nulle, le potentiel de Yukawa devient équivalent à un potentiel coulombien, et sa portée est considérée comme infinie.