Système temps réelEn informatique, on parle d'un système temps réel lorsque ce système est capable de contrôler (ou piloter) un procédé physique à une vitesse adaptée à l'évolution du procédé contrôlé. Les systèmes informatiques temps réel se différencient des autres systèmes informatiques par la prise en compte de contraintes temporelles dont le respect est aussi important que l'exactitude du résultat, autrement dit le système ne doit pas simplement délivrer des résultats exacts, il doit les délivrer dans des délais imposés.
Système d'exploitation temps réelUn système d'exploitation temps réel, en anglais RTOS pour real-time operating system (généralement prononcé à l’anglaise, en séparant le R de l’acronyme : Are-toss), est un système d'exploitation pour lequel le temps maximum entre un stimulus d'entrée et une réponse de sortie est précisément déterminé. Ces systèmes d'exploitation multitâches sont destinés à des applications temps réel : systèmes embarqués (thermostats programmables, contrôleurs électroménagers, téléphones mobiles, robots industriels, vaisseaux spatiaux, systèmes de contrôle commande industriel, matériel de recherche scientifique).
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Régression de PoissonEn statistique, la régression de Poisson est un modèle linéaire généralisé utilisé pour les données de comptage et les tableaux de contingence. Cette régression suppose que la variable réponse Y suit une loi de Poisson et que le logarithme de son espérance peut être modélisé par une combinaison linéaire de paramètre inconnus. Soit un vecteur de variables indépendantes, et la variable que l'on cherche à prédire. Réaliser une régression de Poisson revient à supposer que suit une loi de Poisson de paramètre , avec et les paramètres de la régression à estimer, et le produit scalaire standard de .
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Leverage (statistics)In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points, if any, are outliers with respect to the independent variables. That is, high-leverage points have no neighboring points in space, where is the number of independent variables in a regression model. This makes the fitted model likely to pass close to a high leverage observation.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.