Segmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions. The boundaries between the segments are breakpoints. Segmented linear regression is segmented regression whereby the relations in the intervals are obtained by linear regression. Segmented linear regression with two segments separated by a breakpoint can be useful to quantify an abrupt change of the response function (Yr) of a varying influential factor (x). The breakpoint can be interpreted as a critical, safe, or threshold value beyond or below which (un)desired effects occur. The breakpoint can be important in decision making The figures illustrate some of the results and regression types obtainable. A segmented regression analysis is based on the presence of a set of ( y, x ) data, in which y is the dependent variable and x the independent variable. The least squares method applied separately to each segment, by which the two regression lines are made to fit the data set as closely as possible while minimizing the sum of squares of the differences (SSD) between observed (y) and calculated (Yr) values of the dependent variable, results in the following two equations: Yr = A1.x + K1 for x < BP (breakpoint) Yr = A2.x + K2 for x > BP (breakpoint) where: Yr is the expected (predicted) value of y for a certain value of x; A1 and A2 are regression coefficients (indicating the slope of the line segments); K1 and K2 are regression constants (indicating the intercept at the y-axis). The data may show many types or trends, see the figures.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Publications associées (200)
Concepts associés (4)
Régression multivariée par spline adaptative
La Régression multivariée par spline adaptative (en anglais MARS pour ) est une méthode statistique ; plus précisément, c'est une forme de modèle de régression présentée pour la première fois par Jerome H. Friedman et Bernard Silverman en 1991. C'est une technique de régression non paramétrique pouvant être vue comme une extension des régressions linéaires qui modélisent automatiquement des interactions et des non-linéarités. Le terme MARS est une marque de Salford Systems.
Régression linéaire
En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Coefficient de détermination
vignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.