Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Lipideredresse=1.33|vignette|Phosphatidylcholine, un phosphoglycéride constitué d'un résidu glycérol (en noir) estérifié par la phosphocholine (en rouge), l'acide palmitique (en bleu) et l'acide oléique (en vert). redresse=1.33|vignette|Représentation schématique de la « tête polaire » 1 et des « queues apolaires » 2 de molécules amphiphiles de phosphoglycérides. redresse=1.33|vignette|Les phospholipides peuvent s'auto-assembler en milieu aqueux pour former des liposomes, des micelles ou des bicouches lipidiques.
Équilibre thermodynamiquevignette|200px|Exemple d'équilibre thermodynamique de deux systèmes, en l'occurrence deux phases : l'équilibre liquide-vapeur du brome. En thermodynamique, un équilibre thermodynamique correspond à l'état d'un système ne subissant aucune évolution à l'échelle macroscopique. Les grandeurs intensives caractérisant ce système (notamment la pression, la température et les potentiels chimiques) sont alors homogènes dans l'espace et constantes dans le temps.
Membrane fluidityIn biology, membrane fluidity refers to the viscosity of the lipid bilayer of a cell membrane or a synthetic lipid membrane. Lipid packing can influence the fluidity of the membrane. Viscosity of the membrane can affect the rotation and diffusion of proteins and other bio-molecules within the membrane, there-by affecting the functions of these things. Membrane fluidity is affected by fatty acids. More specifically, whether the fatty acids are saturated or unsaturated has an effect on membrane fluidity.
Domaine protéiqueredresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
Protein–lipid interactionProtein–lipid interaction is the influence of membrane proteins on the lipid physical state or vice versa.
Peptide signalUn peptide signal est une chaîne peptidique d'une protéine servant à adresser celle-ci à un compartiment cellulaire (organite) particulier, chez les eucaryotes ; ou dans le périplasme, voire le milieu extracellulaire, chez les procaryotes. Les peptides signaux sont particulièrement présents lorsqu'une protéine n'est pas codée par le génome de l'organite en question (soit qu'il ne code pas cette protéine particulière, soit il est dénué de génome propre), mais par le génome nucléaire.
IndoleLindole est un composé organique aromatique hétérocyclique. Le nom indole est dérivé de l'indigo, pigment bleu dont la molécule contient deux groupements indoles soudés. Il peut être décrit schématiquement comme étant formé d'un cycle benzénique et d'un cycle pyrrole accolés. Le doublet électronique porté par l'atome d'azote dans la représentation de Lewis participe à la délocalisation aromatique. Contrairement aux amines classiques, l'indole n'est donc pas une base puisque le caractère aromatique serait perdu en cas de réaction chimique mettant en jeu ce doublet.
Alcaloïde indoliquevignette|droite|upright=0.8|Formule structurelle de l'indole. Les alcaloïdes indoliques sont une classe d'alcaloïdes contenant un groupe fonctionnel indole. De nombreux alcaloïdes indoliques comprennent également des groupes isoprènes et sont donc des alcaloïdes indole-terpéniques ou alcaloïdes dérivés de sécologanine et tryptamine. Cette classe d'alcaloïdes est l'une des plus importantes avec plus de 4100 composés différents connus. Beaucoup d'entre eux possèdent une activité physiologique importante et certains d'entre eux sont utilisés en médecine.
Feuillet bêtaLes feuillets β ou feuillets β plissés est la deuxième forme de structure secondaire régulière observée dans les protéines, avec une fréquence de présence plus faible que les hélices α. Les feuillets β sont constitués de brins bêta (brins β) reliés latéralement par au moins deux ou trois liaisons hydrogène entre des atomes du squelette carboné de la chaine polypeptidique pour former un plan plissé (comme un accordéon), généralement tordu.