Paralysie facialeLa paralysie faciale est une atteinte de la motricité des muscles du visage. Elle peut être secondaire à une atteinte du nerf facial correspondant à la septième paire des nerfs crâniens. Il existe deux types de paralysies faciales : paralysie faciale périphérique ; paralysie faciale centrale. Si le nerf facial ou son noyau situé au niveau du tronc cérébral est atteint il s'agit d'une paralysie faciale périphérique. En cas de lésion en amont du noyau, du faisceau géniculé par exemple, il s'agit d'une paralysie faciale centrale.
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Plan d'expériencesOn nomme plan d'expériences (en anglais, design of experiments ou DOE) la suite ordonnée d'essais d'une expérimentation, chacun permettant d'acquérir de nouvelles connaissances en maîtrisant un ou plusieurs paramètres d'entrée pour obtenir des résultats validant un modèle avec une bonne économie de moyens (nombre d'essais le plus faible possible, par exemple). Un exemple classique est le « plan en étoile » où en partant d'un jeu de valeurs choisi pour les paramètres d'un essai central, on complète celui-ci par des essais où chaque fois un seul des facteurs varie « toutes choses égales par ailleurs ».
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Témoin (science)vignette|Deux échantillons de vin avec, à gauche, un échantillon ayant subit une oxydation contrôlée sur moût et, à droite, le témoin. On observe une plus forte oxydation (couleur orange) dans le témoin. Dans une expérience scientifique, un témoin est un dispositif permettant d'isoler un facteur et de conclure sur l'action de ce facteur sur un phénomène physique ou biologique. Le témoin est nécessaire pour vérifier la probité de toute expérience scientifique. Dans une expérience, deux dispositifs sont mis en route.
ReproductibilitéLa reproductibilité d'une expérience scientifique est une des conditions qui permettent d'inclure les observations réalisées durant cette expérience dans le processus d'amélioration perpétuelle des connaissances scientifiques. Cette condition part du principe qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des personnes différentes. Cette condition permet de s'affranchir d'effets aléatoires venant fausser les résultats ainsi que des erreurs de jugement ou des manipulations de la part des scientifiques.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).