Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
Speaker verification systems traditionally extract and model cepstral features or filter bank energies from the speech signal. In this paper, inspired by the success of neural network-based approaches to model directly raw speech signal for applications su ...
Modeling directly raw waveform through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different t ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
This paper explores novel ideas in building end-to-end deep neural network (DNN) based text-dependent speaker verification (SV) system. The baseline approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by esti ...
Automatic visual speech recognition is an interesting problem in pattern recognition especially when audio data is noisy or not readily available. It is also a very challenging task mainly because of the lower amount of information in the visual articulati ...
Deep neural networks (DNNs) have been recently introduced in speech synthesis. In this paper, an investigation on the importance of input features and training data on speaker dependent (SD) DNN-based speech synthesis is presented. Various aspects of the t ...
Posterior features have been shown to yield very good performance in multiple contexts including speech recognition, spoken term detection, and template matching. These days, posterior features are usually estimated at the output of a neural network. More ...