Implant cérébralLes implants cérébraux, également appelés « BrainChips » ou « Brain implant » en anglais, sont des systèmes électroniques implantés dans le cerveau, afin de lire ou contrôler certains signaux cérébraux. Ils sont également connus sous le nom de « puce électronique cérébrale ». Les implants cérébraux sont des implants électroniques constitués d'électrodes ou de grilles d'électrodes, permettant de lire et contrôler des signaux cérébraux. Les électrodes peuvent être placées de façon très précises à l'aide de bras robotisés.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Syndrome du cerveau scindéLe syndrome du cerveau scindé ou divisé ou callosum (en anglais split-brain) est un syndrome résultant de la déconnexion des deux hémisphères. La raison est l'absence de corps calleux à la naissance (malformation congénitale) ou la conséquence de sa destruction accidentelle ou chirurgicale. Le corps calleux relie les deux hémisphères du cerveau. L'association de symptômes est produite par la perturbation ou l'interférence de la connexion entre les hémisphères du cerveau.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
CommunicationLa communication est l'ensemble des interactions avec un tiers humain ou animal qui véhiculent une ou plusieurs informations. En dehors de la communication animale, on distingue chez l'être humain, la communication interpersonnelle, la communication de groupe et la communication de masse, c'est-à-dire de l'ensemble des moyens et techniques permettant la diffusion du message d'une organisation sociale auprès d'une large audience. Plusieurs disciplines emploient la notion de communication sans s'accorder sur une définition commune.
Imagerie spectroscopique proche infrarougeL'imagerie spectroscopique proche infrarouge fonctionnelle (ISPIf, en anglais Near Infrared Spectroscopic Imaging, NIRSI ou functional near-infrared imaging, fNIR) ou spectroscopie proche infrarouge fonctionnelle (SPIRf) est l'application à l' de la spectroscopie proche infrarouge. Cette technique consiste à mesurer de l'oxygénation d'une zone du cerveau afin d'en déduire son activité. Les tissus humains sont relativement transparents à la lumière dans la gamme du proche infrarouge (entre 700 et ) qui peut donc les traverser sur plusieurs centimètres, on parle de fenêtre optique du spectre.
Markov information sourceIn mathematics, a Markov information source, or simply, a Markov source, is an information source whose underlying dynamics are given by a stationary finite Markov chain. An information source is a sequence of random variables ranging over a finite alphabet , having a stationary distribution. A Markov information source is then a (stationary) Markov chain , together with a function that maps states in the Markov chain to letters in the alphabet .
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Models of communicationModels of communication are simplified representations of the process of communication. Most models try to describe both verbal and non-verbal communication and often understand it as an exchange of messages. Their function is to give a compact overview of the complex process of communication. This helps researchers formulate hypotheses, apply communication-related concepts to real-world cases, and test predictions. Despite their usefulness, many models are criticized based on the claim that they are too simple because they leave out essential aspects.