Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Formation à distancevignette|École à distance (par radio) au Queensland vers 1960. La formation à distance est un dispositif d'enseignement appartenant à la grande catégorie de la formation ouverte ou à distance (FOAD). La FOAD inclut un éventail de pratiques hétéroclites, allant des cours par correspondance, aux MOOC en passant par les formations en ligne. Elle est présente . Le terme de FOAD est apparu pour la première fois en 1991, au sein d’un groupe de travail de la Commission européenne.
Computer-supported collaborative learningComputer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.
Learning management systemEn technologies de l'information et de la communication, un learning management system (LMS) ou learning support system (LSS) est un logiciel qui accompagne et gère un processus d'apprentissage ou un parcours pédagogique. En français, on parle de « plateforme d'apprentissage », « système de gestion de l'apprentissage », « centre de formation virtuel », « plate-forme e-learning », « formation ouverte et à distance » (FOAD) ou « formation en ligne », et, particulièrement au Québec, d'« environnement numérique d'apprentissage » (ENA).
Ensemble statistiqueEn physique statistique, un ensemble statistique est une abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la température. Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, est un concept central de la physique statistique.
Ensemble microcanoniqueEn physique statistique, l'ensemble microcanonique est un ensemble statistique constitué des répliques fictives d'un système réel pouvant être considéré comme isolé, par suite dont l'énergie (E), le volume (V) et le nombre de particules (N) sont fixés. Cet ensemble statistique a une importance particulière, car c'est à partir de celui-ci que le postulat de la physique statistique est défini. Cet ensemble permet aussi de déterminer les ensembles canonique et grand-canonique, à l'aide d'échanges d'énergie et/ou de particules avec un réservoir.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Ensemble grand-canoniqueEn physique statistique, l’ensemble grand-canonique est un ensemble statistique qui correspond au cas d'un système qui peut échanger de l'énergie avec un réservoir externe d'énergie (ou thermostat), ainsi que des particules. Il est donc en équilibre thermodynamique thermique et chimique avec le réservoir d'énergie et de particules. Plus précisément, il s'agit de l'ensemble des « copies virtuelles » (ou répliques fictives) du même système en équilibre avec le réservoir d'énergie et de particules.
Probabilistic classificationIn machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: The samples come from some set X (e.