Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
MicrophoneUn microphone (souvent appelé micro par apocope) est un transducteur électroacoustique, c'est-à-dire un appareil capable de convertir un signal acoustique en signal électrique. L'usage de microphones est aujourd'hui largement répandu et concourt à de nombreuses applications pratiques : télécommunications (téléphone, radiotéléphonie, Interphone, systèmes d'intercommunication) ; sonorisation ; radiodiffusion et télévision ; enregistrement sonore notamment musical ; mesure acoustique.
Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.
Synthèse vocaleLa synthèse vocale est une technique informatique de synthèse sonore qui permet de créer de la parole artificielle à partir de n'importe quel texte. Pour obtenir ce résultat, elle s'appuie à la fois sur des techniques de traitement linguistique, notamment pour transformer le texte orthographique en une version phonétique prononçable sans ambiguïté, et sur des techniques de traitement du signal pour transformer cette version phonétique en son numérisé écoutable sur un haut parleur.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
CorpusUn corpus est un ensemble de documents, artistiques ou non (textes, s, vidéos), regroupés dans une optique précise. On peut utiliser des corpus dans plusieurs domaines : études littéraires, linguistiques, scientifiques, philosophie La branche de la linguistique qui se préoccupe plus spécifiquement des corpus s'appelle logiquement la linguistique de corpus. Elle est liée au développement des systèmes informatiques, en particulier à la constitution de bases de données textuelles.
Reconnaissance de l'écriture manuscriteLa reconnaissance de l’écriture manuscrite (en anglais, handwritten text recognition ou HTR) est un traitement informatique qui a pour but de traduire un texte écrit en un texte codé numériquement. Il faut distinguer deux reconnaissances distinctes, avec des problématiques et des solutions différentes : la reconnaissance en-ligne ; la reconnaissance hors-ligne. La reconnaissance de l’écriture manuscrite fait appel à la reconnaissance de forme, mais également au traitement automatique du langage naturel.
Corps calleuxLe corps calleux (ou corpus callosum) est une commissure (moyen d'union entre deux parties) transversale du cerveau présente chez les mammifères placentaires. C’est un faisceau d'axones (fibre nerveuse qui correspond au prolongement long, mince et cylindrique du corps cellulaire d'un neurone) interconnectant les deux hémisphères cérébraux. C'est la plus importante commissure du cerveau, car elle relie les six lobes du cerveau entre eux (lobes frontaux, temporaux, pariétaux et occipitaux gauche et droit).
Linguistique de corpusLa linguistique de corpus est une branche de la linguistique qui étudie le langage à travers des exemples contenus dans des textes réels. En particulier elle se propose d'extraire d'un corpus les connaissances linguistiques essentielles à l’enseignement des langues et à l'élaboration des dictionnaires. La linguistique de corpus situe la signification dans le discours et dans l'interaction entre les gens plutôt que dans l'esprit des locuteurs. En effet le sens des mots est déterminé par le contexte dans lequel ils sont employés.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.