Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Simple linear regressionIn statistics, simple linear regression is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
Régression quantileLes régressions quantiles sont des outils statistiques dont l’objet est de décrire l’impact de variables explicatives sur une variable d’intérêt. Elles permettent une description plus riche que les régressions linéaires classiques, puisqu’elles s’intéressent à l’ensemble de la distribution conditionnelle de la variable d’intérêt et non seulement à la moyenne de celle-ci. En outre, elles peuvent être plus adaptées pour certains types de données (variables censurées ou tronquées, présence de valeurs extrêmes, modèles non linéaires.
Design matrixIn statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for that object. The design matrix is used in certain statistical models, e.g., the general linear model.
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Régression sur composantes principalesEn statistiques, la Régression sur composantes principales est une analyse en régression sur les composantes d'une analyse en composantes principales. On utilise souvent cette technique lorsque les variables explicatives sont proches d'être colinéaires, lorsque par exemple le nombre de variables est très supérieur au nombre d'individus.