HydrogèneLhydrogène est l'élément chimique de numéro atomique 1, de symbole H. L'hydrogène présent sur Terre est presque entièrement constitué de l'isotope H (ou protium, comportant un proton et zéro neutron) et d'environ 0,01 % de deutérium H (un proton, un neutron). Ces deux isotopes de l'hydrogène sont stables. Un troisième isotope, le tritium H (un proton, deux neutrons), instable, est produit dans les réactions de fission nucléaire (réacteurs nucléaires ou bombes).
Réacteur Bvignette|Le réacteur B en 1944. Le réacteur B, situé dans le complexe nucléaire de Hanford près de Richland dans l'État de Washington, est le premier réacteur nucléaire de grande taille destiné à la production de plutonium au monde. Catégorie:Histoire de la physique Catégorie:Historic Civil Engineering Landmark dans l'État de Washington Catégorie:Programme nucléaire des États-Unis Catégorie:Réacteur nucléaire américain Catégorie:Projet Manhattan Catégorie:Richland (Washington) Catégorie:National Historic La
Réacteur à onde progressiveUn réacteur à onde progressive, ou réacteur à onde de combustion, en anglais Traveling Wave Reactor (TWR), est un concept jamais réalisé de réacteur nucléaire qui convertit un isotope fertile en isotope fissile par transmutation nucléaire lors de son fonctionnement. À la différence des réacteurs actuels de type REP ou REB, qui utilisent de l'uranium enrichi, cet hypothétique réacteur convertit lui-même son combustible, qui peut être de l'uranium naturel, de l'uranium appauvri ou du thorium, en produit fissile.
Hydrogène liquideL'hydrogène liquide est le dihydrogène refroidi en dessous de son point de condensation, soit () à pression atmosphérique (). Il a alors une masse volumique de . Il est généralement désigné par l'acronyme LH2 pour les applications astronautiques. C'est en effet l'un des combustibles liquides les plus utilisés au décollage, par exemple par la navette spatiale américaine, le lanceur Delta ou le lanceur Ariane 5. Le chimiste et physicien écossais James Dewar fut le premier à parvenir, en 1899, à liquéfier l'hydrogène, en combinant le refroidissement mécanique du gaz avec une détente adiabatique.
Gaz industrielthumb|Colonne de distillation dans une installation cryogénique de séparation de l'air. Les gaz industriels sont une variété de gaz manufacturés, transformés ou concentrés pour un usage industriel ou médical. Ces gaz peuvent être l'azote, l'oxygène, le dioxyde de carbone, l'argon, l'hydrogène, l'hélium ou l'acétylène. L'expression désigne ces gaz transformés ou l'ensemble du secteur industriel qui effectue ces transformations. Les grandes entreprises présentes dans ce secteur d'activité sont notamment Air liquide, Air Products, Linde et Praxair.
Generation III reactorGeneration III reactors, or Gen III reactors, are a class of nuclear reactors designed to succeed Generation II reactors, incorporating evolutionary improvements in design. These include improved fuel technology, higher thermal efficiency, significantly enhanced safety systems (including passive nuclear safety), and standardized designs intended to reduce maintenance and capital costs. They are promoted by the Generation IV International Forum (GIF).
Réacteur CANDULe réacteur CANDU, conçu au Canada dans les années 1950 et 1960, est un réacteur nucléaire à l'uranium naturel (non enrichi) à eau lourde pressurisée (PHWR) développé par Énergie atomique du Canada Limitée. L'acronyme « CANDU » signifie CANada Deuterium Uranium en référence à l'utilisation de l'oxyde de deutérium (eau lourde) et du combustible à l'uranium naturel. Les réacteurs CANDU utilisent l'uranium naturel comme combustible. L'uranium naturel est formé de plusieurs isotopes de l'uranium dont les plus abondants sont l'uranium 238 (238U) et l'uranium 235 (235U).
Hydrogène métalliqueL'hydrogène métallique est une phase de l'hydrogène qui survient lorsqu'il est soumis à une très forte pression. C'est un exemple de matière dégénérée. Il est estimé qu'il y a un intervalle de pressions (autour de ) tel que l'hydrogène métallique est liquide, même à de très basses températures. L'hydrogène métallique consiste en un treillis de noyaux atomiques, des protons, dont l'espacement est significativement plus petit que le rayon de Bohr. En effet, l'espacement est davantage comparable à une longueur d'onde d'électron (voir hypothèse de De Broglie).
Zone d'exclusion de Tchernobylvignette|Poste de contrôle Dityatki à l'entrée de la zone d'exclusion. vignette|Panneau près de l'entrée dans la zone d'exclusion. La zone d'exclusion de Tchernobyl (également appelée la zone de ou encore tout simplement La Zone, Чорнобильська зона, Chornobyl's'ka zona), officiellement la Zone d'aliénation de la centrale nucléaire de Tchernobyl (en ukrainien : Зона відчуження Чорнобильської АЕС, zona vidchuzhennya Chornobyl's'koyi AES) est une zone d'exclusion autour de la centrale nucléaire de Tchernobyl (à cheval entre les territoires ukrainien et biélorusse) mise en place par l'Armée soviétique peu de temps après la catastrophe de 1986 afin d'évacuer le personnel de Prypiat et des villages environnants et empêcher son accès au public.
Aluminum building wiringAluminum building wiring is a type of electrical wiring for residential construction or houses that uses aluminum electrical conductors. Aluminum provides a better conductivity to weight ratio than copper, and therefore is also used for wiring power grids, including overhead power transmission lines and local power distribution lines, as well as for power wiring of some airplanes. Utility companies have used aluminum wire for electrical transmission in power grids since around the late 1800s to the early 1900s.