Large deformation diffeomorphic metric mappingLarge deformation diffeomorphic metric mapping (LDDMM) is a specific suite of algorithms used for diffeomorphic mapping and manipulating dense imagery based on diffeomorphic metric mapping within the academic discipline of computational anatomy, to be distinguished from its precursor based on diffeomorphic mapping. The distinction between the two is that diffeomorphic metric maps satisfy the property that the length associated to their flow away from the identity induces a metric on the group of diffeomorphisms, which in turn induces a metric on the orbit of shapes and forms within the field of Computational Anatomy.
Mémoire de travailLe système cognitif fonctionne en acquérant, filtrant et traitant des informations vitales, utiles, potentiellement utiles à court, moyen et long termes ; il a donc besoin de stocker (mémoriser) ces informations. Le cerveau semble pour cela disposer de systèmes différents, mais complémentaires, de mémoire à long terme et de mémoire à court terme. La notion de mémoire de travail, apparue dans les années 1970 désigne .
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Neurosciences computationnellesLes neurosciences computationnelles (NSC) sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central du traitement de l'information associé à nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Distance de MahalanobisEn statistique, la distance de Mahalanobis est une mesure de distance mathématique introduite par Prasanta Chandra Mahalanobis en 1936. Elle est basée sur la corrélation entre des variables par lesquelles différents modèles peuvent être identifiés et analysés. C'est une manière utile de déterminer la similarité entre une série de données connues et inconnues. Elle diffère de la distance euclidienne par le fait qu'elle prend en compte la variance et la corrélation de la série de données.
Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Mémoire à court termeLa mémoire à court terme (MCT) désigne en psychologie le type de mémoire qui permet de retenir et de réutiliser une quantité limitée d'informations pendant un temps relativement court, environ une demi-minute. Un grand nombre de recherches en psychologie cognitive ont cherché à déterminer les caractéristiques (capacité, durée, fonctionnement) et le rôle de la mémoire à court terme dans la cognition. Le concept de mémoire à court terme est assez ancien en psychologie scientifique.
Systems scienceSystems science, also referred to as systems research, or, simply, systems, is a transdisciplinary field concerned with understanding systems—from simple to complex—in nature, society, cognition, engineering, technology and science itself. The field is diverse, spanning the formal, natural, social, and applied sciences. To systems scientists, the world can be understood as a system of systems.