Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Fonction à dérivée faibleEn mathématiques, une fonction à dérivée faible est une généralisation du concept de la dérivée d'une fonction (dérivée forte) pour les fonctions non supposées différentiables, mais seulement intégrables, c'est-à-dire dans l'espace Lp : L([a , b]). Soit u une fonction dans l'espace de Lebesgue L([a , b]). On dit que est une dérivée faible de u si, pour toute fonction infiniment différentiable φ telle que φ(a) = φ(b) = 0. Cette définition est motivée par la technique d'intégration par parties.
Credible intervalIn Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Solide de PlatonEn géométrie euclidienne, un solide de Platon est l’un des cinq polyèdres à la fois réguliers et convexes. En référence au nombre de faces (4, 6, 8, 12 et 20) qui les composent, ils sont nommés couramment tétraèdre (régulier), hexaèdre (régulier) ou cube, octaèdre (régulier), dodécaèdre (régulier) et icosaèdre (régulier), les adjectifs « régulier » et « convexe » étant souvent implicites ou omis quand le contexte le permet. Depuis les mathématiques grecques, les solides de Platon furent un sujet d’étude des géomètres en raison de leur esthétique et de leurs symétries.
Multiplicateur de FourierEn théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Intervalle (musique)En musique, l'intervalle entre deux notes est l'écart entre leurs hauteurs respectives. Cet intervalle est dit harmonique si les deux notes sont simultanées, mélodique si les deux notes sont émises successivement. En acoustique, l'intervalle entre deux sons harmoniques est le rapport de leurs fréquences. Chaque intervalle d'une échelle musicale, elle-même distinctive d'un type de musique (indienne, occidentale, musique orientale, etc.). La perception des intervalles diffère selon les cultures.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Marcinkiewicz interpolation theoremIn mathematics, the Marcinkiewicz interpolation theorem, discovered by , is a result bounding the norms of non-linear operators acting on Lp spaces. Marcinkiewicz' theorem is similar to the Riesz–Thorin theorem about linear operators, but also applies to non-linear operators. Let f be a measurable function with real or complex values, defined on a measure space (X, F, ω).
Gamme musicalethumb|Gamme de do majeur |alt=Portée de musique montrant la clé de sol et la gamme de do majeur, composée des notes do ré mi fa sol la si do. En musique, une gamme (appelée aussi parfois « échelle ») est un ensemble de sons, appelés degrés, formant le cadre dans lequel se bâtit une œuvre musicale. Une échelle musicale est caractérisée par les intervalles conjoints qui la composent — c'est-à-dire, les intervalles entre degrés voisins —, et ce, indépendamment de toute idée de tonalité et de tonique.