Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Video codecA video codec is software or hardware that compresses and decompresses digital video. In the context of video compression, codec is a portmanteau of encoder and decoder, while a device that only compresses is typically called an encoder, and one that only decompresses is a decoder. The compressed data format usually conforms to a standard video coding format. The compression is typically lossy, meaning that the compressed video lacks some information present in the original video.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Efficacité spectraleEn transmissions numériques, l'efficacité spectrale η se définit comme étant le rapport entre le débit binaire (en bit/s) et la bande passante (en Hz). Nous pouvons aussi dire que c'est le nombre de données binaires envoyés sur le canal de communication par ressource temps-fréquence (par accès au canal ou channel use). L'efficacité spectrale d'une modulation se définit par le paramètre : η = D/B et s'exprime en "bit par seconde et par hertz". La valeur D est le débit binaire (en bit/s) et B (en Hz) est la largeur de la bande occupée par le signal modulé.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Compression fractaleLa compression fractale est une méthode de encore peu utilisée aujourd’hui. Elle repose sur la détection de la récurrence des motifs, et tend à éliminer la redondance d’informations dans l'image. C'est une méthode destructive puisque l'ensemble des données de départ ne se retrouve pas dans l'image finale. Il existe plusieurs méthodes (subdivision de triangles, Delaunay etc.) mais la compression par la méthode Jacquin est la plus connue.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Transform codingTransform coding is a type of data compression for "natural" data like audio signals or photographic s. The transformation is typically lossless (perfectly reversible) on its own but is used to enable better (more targeted) quantization, which then results in a lower quality copy of the original input (lossy compression). In transform coding, knowledge of the application is used to choose information to discard, thereby lowering its bandwidth. The remaining information can then be compressed via a variety of methods.