Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Visagethumb|right|200px|Visage de jeune fille (peinture d'étude de William Bouguereau - ). Le visage est la zone externe de la partie antérieure de la tête de l'être humain, appelée aussi face ou figure. Il se structure autour de zones osseuses abritant plusieurs organes des sens ; il comprend notamment la peau, le menton, la bouche, les lèvres, le philtrum, les dents, le nez, les joues, les yeux, les sourcils, le front, les cheveux et les oreilles.
Recalage d'imagesEn , le recalage est une technique qui consiste en la « mise en correspondance d'images », dans le but de comparer ou combiner leurs informations respectives. Cette méthode repose sur les mêmes principes physique et le même type de modélisation mathématique que la . Cette mise en correspondance se fait par la recherche d'une transformation géométrique permettant de passer d'une image à une autre.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
EigenfaceLes eigenfaces sont un ensemble de vecteurs propres utilisés dans le domaine de la vision artificielle afin de résoudre le problème de la reconnaissance du visage humain. Le recours à des eigenfaces pour la reconnaissance a été développé par Sirovich et Kirby (1987) et utilisé par Matthew Turk et Alex Pentland pour la classification de visages. Cette méthode est considérée comme le premier exemple réussi de technologie de reconnaissance faciale.
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Racisme environnementalvignette| Des personnes protestent contre la crise de l'eau à Flint, dans le Michigan, qui affecte de manière disproportionnée les personnes de couleur et les communautés à faible revenu. Le racisme environnemental est un concept du mouvement pour la justice environnementale, qui s'est développé aux États-Unis et à l'étranger dans les années 1970 et 1980. Le terme est utilisé pour décrire l'injustice environnementale qui se produit dans un contexte racialisé, tant dans la pratique que dans la politique.