Publication

Analysis of Multimodal Signals Using Redundant Representations [Winner of IBM Student Paper Award]

Résumé

In this work we explore the potentialities of a framework for the representation of audio-visual signals using decompositions on overcomplete dictionaries. Redundant decompositions may describe audio-visual sequences in a concise fashion, preserving good representation properties thanks to the use of redundant, well designed, dictionaries. We expect that this will help us overcome two typical problems of multimodal fusion algorithms. On one hand, classical representation techniques, like pixel-based measures (for the video) or Fourier-like transforms (for the audio), take into account only marginally the physics of the problem. On the other hand, the input signals have large dimensionality. The results we obtain by making use of sparse decompositions of audio-visual signals over redundant codebooks are encouraging and show the potentialities of the proposed approach to multimodal signal representation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.