Semiparametric modelIn statistics, a semiparametric model is a statistical model that has parametric and nonparametric components. A statistical model is a parameterized family of distributions: indexed by a parameter . A parametric model is a model in which the indexing parameter is a vector in -dimensional Euclidean space, for some nonnegative integer . Thus, is finite-dimensional, and . With a nonparametric model, the set of possible values of the parameter is a subset of some space , which is not necessarily finite-dimensional.
Quantum mutual informationIn quantum information theory, quantum mutual information, or von Neumann mutual information, after John von Neumann, is a measure of correlation between subsystems of quantum state. It is the quantum mechanical analog of Shannon mutual information. For simplicity, it will be assumed that all objects in the article are finite-dimensional. The definition of quantum mutual entropy is motivated by the classical case.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Variation of informationIn probability theory and information theory, the variation of information or shared information distance is a measure of the distance between two clusterings (partitions of elements). It is closely related to mutual information; indeed, it is a simple linear expression involving the mutual information. Unlike the mutual information, however, the variation of information is a true metric, in that it obeys the triangle inequality. Suppose we have two partitions and of a set into disjoint subsets, namely and .
Informationvignette|redresse=0.6|Pictogramme représentant une information. L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« information » est ce qui donne une forme à l'esprit. Elle vient du verbe latin « informare », qui signifie « donner forme à » ou « se former une idée de ». L'information désigne à la fois le message à communiquer et les symboles utilisés pour l'écrire. Elle utilise un code de signes porteurs de sens tels qu'un alphabet de lettres, une base de chiffres, des idéogrammes ou pictogrammes.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Fonction caractéristique (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.