Maximum a posterioriL'estimateur du maximum a posteriori (MAP), tout comme la méthode du maximum de vraisemblance, est une méthode pouvant être utilisée afin d'estimer un certain nombre de paramètres inconnus, comme les paramètres d'une densité de probabilité, reliés à un échantillon donné. Cette méthode est très liée au maximum de vraisemblance mais en diffère toutefois par la possibilité de prendre en compte un a priori non uniforme sur les paramètres à estimer.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
A priori et a posterioriA priori (ou à priori selon l'orthographe rectifiée de 1990) et a posteriori (ou à postériori) sont un couple de concepts utilisés en philosophie et notamment en philosophie de la connaissance. Une connaissance est a priori lorsqu'elle est indépendante de l'expérience sensible et logiquement antérieure. Emmanuel Kant soutient qu'il s'agit d'une connaissance « indépendante de l'expérience ». A contrario, une connaissance a posteriori est empirique, c'est-à-dire qu'elle est « issu[e] de l'expérience » (Kant).
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l