Erreur d'approximationvignette|Approximation de la fonction exponentielle par une fonction affine. En analyse numérique, une branche des mathématiques, l'erreur d'approximation de certaines données est la différence entre une valeur exacte et une certaine valeur approchée ou approximation de celle-ci. Une erreur d'approximation peut se produire lorsque la mesure des données n'est pas précise (en raison des instruments) ; ou lors de l'emploi de valeurs approchées au lieu des valeurs exactes (par exemple, 3,14 au lieu de π).
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Empirical probabilityIn probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment.
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
Méthode des moments (statistiques)La méthode des moments est un outil d'estimation intuitif qui date du début des statistiques. Elle consiste à estimer les paramètres recherchés en égalisant certains moments théoriques (qui dépendent de ces paramètres) avec leurs contreparties empiriques. L'égalisation se justifie par la loi des grands nombres qui implique que l'on peut "approcher" une espérance mathématique par une moyenne empirique. On est donc amené à résoudre un système d'équations. On suppose que l'échantillon X1,...
Erreur de mesurevignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
Residual (numerical analysis)Loosely speaking, a residual is the error in a result. To be precise, suppose we want to find x such that Given an approximation x0 of x, the residual is that is, "what is left of the right hand side" after subtracting f(x0)" (thus, the name "residual": what is left, the rest). On the other hand, the error is If the exact value of x is not known, the residual can be computed, whereas the error cannot. Similar terminology is used dealing with differential, integral and functional equations.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Error analysis (mathematics)In mathematics, error analysis is the study of kind and quantity of error, or uncertainty, that may be present in the solution to a problem. This issue is particularly prominent in applied areas such as numerical analysis and statistics. In numerical simulation or modeling of real systems, error analysis is concerned with the changes in the output of the model as the parameters to the model vary about a mean. For instance, in a system modeled as a function of two variables Error analysis deals with the propagation of the numerical errors in and (around mean values and ) to error in (around a mean ).
Système de réaction-diffusionUn système de réaction-diffusion est un modèle mathématique qui décrit l'évolution des concentrations d'une ou plusieurs substances spatialement distribuées et soumises à deux processus : un processus de réactions chimiques locales, dans lequel les différentes substances se transforment, et un processus de diffusion qui provoque une répartition de ces substances dans l'espace. Cette description implique naturellement que de tels systèmes sont appliqués en chimie.