Publication

Bicolored matchings in some classes of graphs

Concepts associés (36)
Maximum cardinality matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
Graphe régulier
En théorie des graphes, un graphe régulier est un graphe où tous les sommets ont le même nombre de voisins, c'est-à-dire le même degré ou valence. Un graphe régulier dont les sommets sont de degré est appelé un graphe -régulier ou graphe régulier de degré . Un graphe 0-régulier est un ensemble de sommets déconnectés; un graphe 1-régulier a un nombre pair de sommets et est un ensemble d'arêtes déconnectées ou couplage; enfin, un graphe 2-régulier est un ensemble de cycles déconnectés.
Théorie des graphes
vignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Maximum weight matching
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same.
List of graphs
This partial list of graphs contains definitions of graphs and graph families. For collected definitions of graph theory terms that do not refer to individual graph types, such as vertex and path, see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see . Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer.
Graphe distance-régulier
En théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de . De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et . Formellement, tels que et où est l’ensemble des sommets à distance de , et .
Graphe fortement régulier
En théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).
Graphe birégulier
Dans la théorie des graphes, un graphe birégulier est un graphe biparti dans lequel tous les sommets de chacune des deux parties du graphe ont le même degré. Notons et les deux parties d'un graphe birégulier. Si le degré des sommets de est et si le degré des sommets de est , le graphe est dit -birégulier. vignette|Le graphe biparti complet est -birégulier. Tout graphe biparti complet (figure) est -birégulier. vignette|gauche|Le graphe du dodécaèdre rhombique est birégulier. Le graphe du dodécaèdre rhombique (figure) est -birégulier.
Isomorphisme de graphes
En mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Graphe (mathématiques discrètes)
Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.