Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
SupraconductivitéLa supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Unconventional superconductorUnconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions. The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich. For a long time it was believed that CeCu2Si2 was a singlet d-wave superconductor, but since the mid 2010s, this notion has been strongly contested. In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13, UPt3 and URu2Si2.
Oxygénothérapie normobarevignette|redresse|Réanimation d’une patiente à l’aide d’un masque à oxygène. L’oxygénothérapie est le fait d'apporter un supplément de dioxygène (appelé couramment « oxygène ») à un patient. On la dit « normobare » par opposition à l'oxygénation hyperbare qui se pratique en caisson hyperbare. Le dioxygène est le comburant, dont la proportion dans l’air ambiant est d’environ 21 %, permet de libérer l'énergie contenue dans les nutriments, via la respiration cellulaire.
OxygèneL'oxygène est l'élément chimique de numéro atomique 8, de symbole O. C'est la tête de file du groupe des chalcogènes, souvent appelé groupe de l'oxygène. Découvert indépendamment en 1772 par le Suédois Carl Wilhelm Scheele à Uppsala, et en 1774 par Pierre Bayen à Châlons-en-Champagne ainsi que par le Britannique Joseph Priestley dans le Wiltshire, l'oxygène a été nommé ainsi en 1777 par le Français Antoine Lavoisier du grec ancien (« aigu », c'est-à-dire ici « acide »), et (« générateur »), car Lavoisier pensait à tort que : Une molécule de formule chimique , appelée communément « oxygène » mais « dioxygène » par les chimistes, est constituée de deux atomes d'oxygène reliés par liaison covalente : aux conditions normales de température et de pression, le dioxygène est un gaz, qui constitue 20,8 % du volume de l'atmosphère terrestre au niveau de la mer.
HypoxieL'hypoxie (du grec , et ) est une inadéquation entre les besoins tissulaires en oxygène et les apports. Elle peut être la conséquence de l'hypoxémie (diminution du taux d'oxygène dans le sang). L'hypoxie peut avoir plusieurs origines : l’accident de décompression ; l’altitude ; l’anémie ; l’altération de l’hémoglobine (pigment destiné à fixer l’oxygène dans le sang) ; l’intoxication par le monoxyde de carbone (CO) ; l’intoxication du sang par certains éléments autres que le monoxyde de carbone ; la pneumopathie (maladie des poumons) chronique ; l’hypoventilation ; la cardiopathie congénitale (malformation cardiaque depuis la naissance) ; l’insuffisance cardiaque (insuffisance de fonctionnement de la pompe cardiaque dont la capacité ne suffit plus à envoyer une quantité de sang normale vers les organes, les tissus).
Rayonnement synchrotronLe rayonnement synchrotron, ou rayonnement de courbure, est un rayonnement électromagnétique émis par une particule chargée qui se déplace dans un champ magnétique et dont la trajectoire est déviée par ce champ magnétique. Ce rayonnement est émis en particulier par des électrons qui tournent dans un anneau de stockage. Puisque ces particules modifient régulièrement leur course, leur vitesse change régulièrement, elles émettent alors de l'énergie (sous forme de photons) qui correspond à l’accélération subie.
Synchrotron light sourceA synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers.
Superconducting wireSuperconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
SynchrotronUn synchrotron est un instrument électromagnétique de grande taille destiné à l'accélération à haute énergie de particules élémentaires. Le plus grand accélérateur de type synchrotron est le Grand collisionneur de hadrons (LHC) de 27 kilomètres de circonférence, proche de Genève en Suisse, construit en 2008 par l'Organisation européenne pour la recherche nucléaire (CERN). Le principe du synchrotron a été presenté pendant la seconde guerre mondiale, en 1943, par le Oliphant à Birmingham.