Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Potts modelIn statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
Représentation d'interactionLa représentation d'interaction ou représentation de Dirac de la mécanique quantique est une manière de traiter les problèmes dépendant du temps. Dans la représentation d'interaction, on applique les hypothèses suivantes : On considère un hamiltonien ayant la forme suivante : où est constant dans le temps et décrit une interaction perturbative qui peut dépendre du temps. Les états propres sont dépendants du temps Les opérateurs sont aussi dépendants du temps La dynamique des états est décrite suivant la représentation de Schrödinger tandis que la dynamique des opérateurs est décrite suivant la représentation de Heisenberg.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Habitat passifLa notion d’habitat passif ou de construction passive désigne un bâtiment dont la consommation énergétique au mètre carré est très basse, voire nulle (entièrement compensée par les apports solaires ou géothermique, ou par les calories émises par des apports internes tels que matériel électrique et la chaleur corporelle des habitants) ou positive (bâtiment positif en énergie). Dans les textes de référence, ce concept, originaire d'Europe du Nord, cible surtout les économies de chauffage.