Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Tornado codeIn coding theory, Tornado codes are a class of erasure codes that support error correction. Tornado codes require a constant C more redundant blocks than the more data-efficient Reed–Solomon erasure codes, but are much faster to generate and can fix erasures faster. Software-based implementations of tornado codes are about 100 times faster on small lengths and about 10,000 times faster on larger lengths than Reed–Solomon erasure codes. Since the introduction of Tornado codes, many other similar erasure codes have emerged, most notably Online codes, LT codes and Raptor codes.
Viterbi decoderA Viterbi decoder uses the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code. There are other algorithms for decoding a convolutionally encoded stream (for example, the Fano algorithm). The Viterbi algorithm is the most resource-consuming, but it does the maximum likelihood decoding. It is most often used for decoding convolutional codes with constraint lengths k≤3, but values up to k=15 are used in practice. Viterbi decoding was developed by Andrew J.
Théorie des codesEn théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon.
Convolutional codeIn telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.
Code linéaireEn mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Distance de HammingLa distance de Hamming est une notion mathématique, définie par Richard Hamming, et utilisée en informatique, en traitement du signal et dans les télécommunications. Elle joue un rôle important en théorie algébrique des codes correcteurs. Elle permet de quantifier la différence entre deux séquences de symboles. C'est une distance au sens mathématique du terme. À deux suites de symboles de même longueur, elle associe le nombre de positions où les deux suites diffèrent.
Code de répétitionLe code de répétition est une solution simple pour se prémunir des erreurs de communication dues au bruit dans un canal binaire symétrique. C'est une technique de codage de canal, c'est-à-dire un code correcteur. Il s'agit d'envoyer plusieurs copies de chaque bit à être transmis. Autrement dit, ce code de répétition encode la transmission des bits ainsi (sur trois bits) : La première chaîne de caractères est appelée le 0 logique et la deuxième, le 1 logique puisqu'elles jouent le rôle de 0 et 1 respectivement.
Block codeIn coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.