Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Plane stressIn continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 (representable as a 2×2 matrix rather than 3×3). A related notion, plane strain, is often applicable to very thick members.
Résistance des matériauxvignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).
Residual stressIn materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones.
Loi de HookeEn physique, la loi de Hooke modélise le comportement des solides élastiques soumis à des contraintes. Elle stipule que la déformation élastique est une fonction linéaire des contraintes. Sous sa forme la plus simple, elle relie l'allongement (d'un ressort, par exemple) à la force appliquée. Cette loi de comportement a été énoncée par le physicien anglais Robert Hooke en 1676. La loi de Hooke est en fait le terme de premier ordre d'une série de Taylor. C'est donc une approximation qui peut devenir inexacte quand la déformation est trop grande.
Cylinder stressIn mechanics, a cylinder stress is a stress distribution with rotational symmetry; that is, which remains unchanged if the stressed object is rotated about some fixed axis. Cylinder stress patterns include: circumferential stress, or hoop stress, a normal stress in the tangential (azimuth) direction. axial stress, a normal stress parallel to the axis of cylindrical symmetry. radial stress, a normal stress in directions coplanar with but perpendicular to the symmetry axis.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
ViscoélasticitéLa viscoélasticité est la propriété de matériaux qui présentent des caractéristiques à la fois visqueuses et élastiques, lorsqu'ils subissent une déformation. Les matériaux visqueux, comme le miel, résistent bien à un écoulement en cisaillement et présentent une déformation qui augmente linéairement avec le temps lorsqu'une contrainte est appliquée. Les matériaux élastiques se déforment lorsqu'ils sont contraints, et retournent rapidement à leur état d'origine une fois la contrainte retirée.
Fibre de carbonevignette|Petits morceaux de fibres de carbone (longueur 8 mm). La fibre de carbone se compose de fibres extrêmement fines, d'environ cinq à dix micromètres de diamètre, et est composée principalement d'atomes de carbone. Ceux-ci sont agglomérés dans des cristaux microscopiques qui sont alignés plus ou moins parallèlement à l'axe long de la fibre. L'alignement des cristaux rend la fibre extrêmement résistante pour sa taille. Plusieurs milliers de fibres de carbone sont enroulées ensemble pour former un fil, qui peut être employé tel quel ou tissé.
DislocationEn science des matériaux, une dislocation est un défaut linéaire (c'est-à-dire non-ponctuel), correspondant à une discontinuité dans l'organisation de la structure cristalline. Une dislocation peut être vue simplement comme un "quantum" de déformation élémentaire au sein d'un cristal possédant un champ de contrainte à longue distance. Elle est caractérisée par : la direction de sa ligne ; un vecteur appelé « vecteur de Burgers » dont la norme représente l'amplitude de la déformation qu'elle engendre.