Recalage d'imagesEn , le recalage est une technique qui consiste en la « mise en correspondance d'images », dans le but de comparer ou combiner leurs informations respectives. Cette méthode repose sur les mêmes principes physique et le même type de modélisation mathématique que la . Cette mise en correspondance se fait par la recherche d'une transformation géométrique permettant de passer d'une image à une autre.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Dictionnaire WebsterLe Dictionnaire Webster est le nom donné à un type de dictionnaire de langue anglaise aux États-Unis et faisant autorité concernant l'anglais américain. Le premier dictionnaire Webster est issu des travaux du lexicographe Noah Webster dont la première version, Compendious Dictionary of the English Language, date de 1806. Bien que les dictionnaires Merriam-Webster soient les descendants originaux des travaux de Noah Webster, plusieurs autres dictionnaires utilisent ce nom, qui depuis est devenu une marque utilisée comme nom.
Dictionnaire thématiqueUn dictionnaire thématique est un dictionnaire dont les entrées ne respectent pas strictement sur l'ordre alphabétique, mais sont classées par thèmes. Le dictionnaire des synonymes, les dictionnaires médicaux ou scientifiques ou les thésaurus lexicographiques sont des exemples de dictionnaires thématiques. Depuis le , les dictionnaires et les autres ouvrages du même genre présentent les mots par ordre alphabétique. Bien que ce classement facilite la rapidité d'accès aux mots, il ne tient pas compte de leur sens et éloigne les uns des autres des mots apparentés par le sens.
Vuethumb|250px|Ommatidies de krill antarctique, composant un œil primitif adapté à une vision sous-marine. thumb|250px|Yeux de triops, primitifs et non mobiles. thumb|250px|Yeux multiples d'une araignée sauteuse (famille des Salticidae, composée d'araignées chassant à l'affut, mode de chasse nécessitant une très bonne vision). thumb|250px|Œil de la libellule Platycnemis pennipes, offrant un champ de vision très large, adapté à un comportement de prédation.
Matching pursuitMatching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum.
Perception du tempsLa perception du temps désigne la perception subjective que l'on a de l'écoulement du temps. Si nous possédons des yeux pour voir, des oreilles pour entendre et un nez pour sentir, nous n'avons pas de récepteurs sensoriels dédiés à la perception du temps. Or nous semblons pourtant capables de percevoir l'écoulement du temps. L'étude de la perception du temps se confronte donc à ce qui peut sembler un paradoxe renvoyant à la nature même du temps où se rencontrent les expériences psychologiques, les réflexions philosophiques et les mécanismes fondamentaux du cerveau.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.