Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigated the effects of piracetam, a nootropic, on learning and memory formation for a passive avoidance task in day-old chicks. To test for the possible cognitive-enhancing properties of piracetam, a weak learning version of this task--whereby chicks maintain a memory to avoid pecking at a bead coated in a diluted aversant for up to 10 h--was used. Post-training (5, 30 or 60 min), but not pretraining, injections of piracetam (10 or 50 mg/kg, i.p.) increased recall for the task when the chicks were tested 24 h later. Because previous studies showed that long-term memory for the passive avoidance task is dependent upon a brain corticosteroid action, and because the efficacy of piracetam-like compounds is also modulated by corticosteroids, we tested whether the facilitating effect of piracetam was dependent upon a corticosteroid action through specific brain receptors (mineralocorticoid receptor and glucocorticoid receptor). First, increased plasma levels of corticosterone were found 5 min after piracetam injection. In addition, intracerebral administration of antagonists for each receptor type (RU28318, for mineralocorticoid receptors, and RU38486 for glucocorticoid receptors; i.c.) given before the nootropic inhibited the facilitative effect of piracetam on memory consolidation. These results give further support to a modulatory action of piracetam on the mechanisms involved in long-term memory formation through a neural action that, in this learning model, requires the activation of the two types of intracellular corticosteroid receptors.
Johannes Gräff, Bianca Ambrogina Silva
Wulfram Gerstner, Chiara Gastaldi, Marta Boscaglia