En mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice dont tous les coefficients qui ne sont ni sur la diagonale principale, ni sur la diagonale juste au-dessus, ni sur la diagonale juste en dessous, sont nuls.
Par exemple, la matrice suivante est tridiagonale :
Une matrice , dont on note les coefficients a, est dite tridiagonale si :
a = 0 pour tous (i, j) tels que i – j > 1,
autrement dit si c'est une matrice de Hessenberg à la fois supérieure et inférieure.
Si une matrice réelle tridiagonale A vérifie ak,k+1 × ak+1,k > 0 pour k = 1, 2, ..., n — c’est-à-dire si les signes de ses coefficients sont symétriques — alors elle est semblable à une matrice hermitienne, et donc toutes ses valeurs propres sont réelles. Cette dernière propriété est conservée si l'on considère plutôt la condition ak,k+1 × ak+1,k ≥ 0.
L'ensemble de toutes les matrices tridiagonales n × n est un espace vectoriel de dimension n + 2(n – 1) = 3n – 2 (le nombre de coefficients non nuls).
De nombreux algorithmes d'algèbre linéaire nécessitent bien moins d'opérations lorsqu'on les exécute sur des matrices diagonales. Il est courant que ce gain se propage aux matrices tridiagonales.
Par exemple, le déterminant d'une matrice tridiagonale A n×n peut être calculé par la formule récursive suivante :
où l'on note det [A] le k-ième mineur dominant, c'est-à-dire le déterminant de la matrice obtenue en ne gardant que les k premières lignes et colonnes de A. Le calcul du déterminant par cette méthode est linéaire en n pour les matrices tridiagonales, alors qu'il est en n dans le cas général.
Une transformation qui réduit une matrice quelconque à une matrice de Hessenberg réduira une matrice hermitienne à une matrice tridiagonale. Ainsi, de nombreux algorithmes de calcul des valeurs propres utilisent une étape de réduction sous la forme d'une matrice tridiagonale s'ils travaillent sur des matrices hermitiennes.
Une matrice tridiagonale peut être stockée de façon optimisée en utilisant une représentation particulière.