Spectroscopie infrarouge à transformée de FourierLa spectroscopie infrarouge à transformée de Fourier ou spectroscopie IRTF (ou encore FTIR, de l'anglais Fourier Transform InfraRed spectroscopy) est une technique utilisée pour obtenir le spectre d'absorption, d'émission, la photoconductivité ou la diffusion Raman dans l'infrarouge d'un échantillon solide, liquide ou gazeux. Un spectromètre FTIR permet de collecter simultanément les données spectrales sur un spectre large.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Optique de FourierL'optique de Fourier (du nom de Joseph Fourier), est un domaine de l'optique ondulatoire se basant sur la notion de transformée de Fourier. L'optique ondulatoire utilise principalement le principe de Huygens-Fresnel pour aboutir à des résultats comme celui des fentes de Young, ou de la tache d'Airy. Ces calculs sont relativement compliqués, et pour les simplifier, il est possible de se placer dans le cadre de certaines approximations. Par exemple, la diffraction de Fraunhofer suppose que l'on observe la figure de diffraction à très grande distance de l'objet diffractant.
MonochromateurUn monochromateur est un dispositif utilisé en optique pour sélectionner une gamme la plus étroite possible de longueurs d'onde à partir d'un faisceau lumineux de gamme de longueurs d'onde plus large. Le nom monochromateur est issu du grec mono (seul) et chroma (couleur). Bien que le principe soit radicalement différent, la fonction est similaire à celle des filtres utilisés pour sélectionner une fréquence d'un signal électromagnétique dans un récepteur radio.
Signal sinusoïdalthumb|upright|Signal sinusoïdal simple. Un signal sinusoïdal est un signal continu (onde) dont l’amplitude, observée à un endroit précis, est une fonction sinusoïdale du temps, définie à partir de la fonction sinus. La courbe associée s'appelle une sinusoïde (voir Figure 1). Un signal sinusoïdal est caractérisé par son amplitude maximale et sa fréquence.
Longueur d'ondeLa longueur d’onde est une grandeur physique caractéristique d'une onde monochromatique dans un milieu homogène, définie comme la distance séparant deux maxima consécutifs de l'amplitude. La longueur d'onde dépend de la célérité ou vitesse de propagation de l'onde dans le milieu qu'elle traverse. Lorsque l'onde passe d'un milieu à un autre, dans lequel sa célérité est différente, sa fréquence reste inchangée, mais sa longueur d'onde varie . Lorsque l'onde n'est pas monochromatique, l'analyse harmonique permet de la décomposer en une somme d'ondes monochromatiques.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Diffractionthumb|Phénomène d'interférences dû à la diffraction d'une onde à travers deux ouvertures. La diffraction est le comportement des ondes lorsqu'elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par des phénomènes d'interférence. La diffraction s’observe avec la lumière, mais de manière générale avec toutes les ondes : le son, les vagues, les ondes radio, Elle permet de mettre en évidence le caractère ondulatoire d'un phénomène et même de corps matériels tels que des électrons, neutrons, atomes froids.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.