Lie group actionIn differential geometry, a Lie group action is a group action adapted to the smooth setting: G is a Lie group, M is a smooth manifold, and the action map is differentiable. TOC Let be a (left) group action of a Lie group G on a smooth manifold M; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G on M consists of a Lie group homomorphism . A smooth manifold endowed with a Lie group action is also called a G-manifold.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
Distribution (differential geometry)In differential geometry, a discipline within mathematics, a distribution on a manifold is an assignment of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle . Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, e.g.
Structure presque complexeEn géométrie différentielle, une structure presque complexe sur une variété différentielle réelle est la donnée d'une structure d'espace vectoriel complexe sur chaque espace tangent. Une structure presque complexe J sur une variété différentielle M est un champ d'endomorphismes J, c'est-à-dire une section globale du fibré vectoriel , vérifiant : Une variété différentielle munie d'une structure presque complexe est appelée une variété presque complexe.
Géométrie non commutativeLa géométrie non commutative, développée par Alain Connes, est une branche des mathématiques, et plus précisément un type de géométrie algébrique distincte de la géométrie algébrique telle qu'on l'entend habituellement (celle développée par Alexandre Grothendieck), car s'intéressant à des objets définis à partir de structures algébriques non commutatives. L'idée principale est qu'un espace au sens de la géométrie usuelle peut être décrit par l'ensemble des fonctions numériques définies sur cet espace.
Foncteur représentableOn rencontre en mathématiques de nombreuses propriétés universelles. Le formalisme des catégories permet d'exprimer ces propriétés de façon très simple. Soit une catégorie localement petite et F un foncteur contravariant, respectivement covariant, de dans Ens (catégorie des ensembles). On dit que F est représentable s'il existe un objet X de tel que F soit isomorphe au foncteur , respectivement au foncteur . Les transformations naturelles de dans F correspondent bijectivement aux éléments de .
Espace classifiantEn mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).