In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e., a topological space all of whose homotopy groups are trivial) by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EG → BG. As explained later, this means that classifying spaces represent a set-valued functor on the of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.
For a discrete group G, BG is, roughly speaking, a path-connected topological space X such that the fundamental group of X is isomorphic to G and the higher homotopy groups of X are trivial, that is, BG is an Eilenberg–MacLane space, or a K(G,1).
An example of a classifying space for the infinite cyclic group G is the circle as X. When G is a discrete group, another way to specify the condition on X is that the universal cover Y of X is contractible. In that case the projection map
becomes a fiber bundle with structure group G, in fact a principal bundle for G. The interest in the classifying space concept really arises from the fact that in this case Y has a universal property with respect to principal G-bundles, in the . This is actually more basic than the condition that the higher homotopy groups vanish: the fundamental idea is, given G, to find such a contractible space Y on which G acts freely. (The weak equivalence idea of homotopy theory relates the two versions.) In the case of the circle example, what is being said is that we remark that an infinite cyclic group C acts freely on the real line R, which is contractible.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
En mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
En mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
We construct a spectral sequence converging to the homology of the ordered configuration spaces of a product of parallelizable manifolds. To identify the second page of this spectral sequence, we introduce a version of the Boardman-Vogt tensor product for ...
Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constructed a strict model of its loop space (Omega) over tild ...
In the first part of this paper, we propose a uniform interpretation of characteristic classes as obstructions to the reduction of the structure group and to the existence of an equivariant extension of a certain homomorphism defined a priori only on a sin ...