Lecture

Model Selection and Evaluation: Bias-Variance Dilemma, Ridge Estimation

Description

This lecture covers the concepts of over-learning, generalization, and under-learning in machine learning models. It explains the bias-variance tradeoff, approximation errors, and the ridge regression technique. The instructor illustrates how to select the optimal model and discusses the impact of bias and variance on model performance.

Instructor
fugiat deserunt eu exercitation
Est sit id Lorem consectetur ipsum nostrud qui incididunt culpa. Consequat cillum proident voluptate pariatur esse est mollit do ad anim est nostrud. Sunt do id enim quis. Ea velit pariatur qui magna magna. Anim sit magna adipisicing non cillum minim consectetur. Velit anim consequat consequat culpa anim tempor in duis dolore ullamco magna.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.